首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Process hazard analysis (PHA) studies (e.g. HAZOP) identify hazard scenarios and each scenario is examined individually to decide whether risk reduction measures are needed. However, much more can be done to benefit from the contents of studies.PHA studies contain so much data that a manual review is precluded from yielding insights into their results. Fortunately, valuable information can be extracted using metrics and analytics that consider all the contents of a PHA study. The management of safety, operability, reliability, utilization, and loss prevention can all be improved.Metrics evaluate the contents of PHA studies to provide insights into the safety of processes and the quality of studies. Measures of process safety and study quality can be compared with norms to identify possible departures that may need to be addressed.Rather than focusing decision making on the risks of individual hazard scenarios, as is common practice, analytics enable a deeper analysis of the entire set of scenarios for a process. This enables better decisions to be made on where and how risk reduction resources should be allocated. Analytics can also be used to prioritize maintenance, training, and other activities.Various analytics and metrics for PHA studies are described together with examples that illustrate their use.  相似文献   

2.
Most process hazard analysis (PHA) studies today are conducted using traditional methods such as the hazard and operability study (HAZOP). Traditional methods are based on a chain-of-events model of accident causality. Current models of accident causality are based on systems theory and provide a more complete representation of the causal factors involved in accidents. Consequently, it is logical to expect that PHA methods should reflect these models, that is, system-theoretic hazard analysis (STHA) should be used. Indeed, system-theoretic process analysis (STPA) has been developed as such a method. STPA has been used in a variety of industries but, at this time, it has not gained acceptance by the process industries. This article explores the reasons for this situation. Expectations for PHA in the process industries are examined and issues for the application of STPA in the process industries are discussed. It is concluded that a variety of matters must be addressed before STPA can be considered as a viable PHA method for the process industries and the case for the use of STHA in the process industries is not yet proven.  相似文献   

3.
This paper discusses the framework methodology behind the proposed simulation-based HAZOP tool. Simulation-based approach is one of the many ways to support conventional HAZOP by its automation. Compared to knowledge-based and other approaches, a HAZOP software tool based on deviations simulation is able to examine the investigated process more into detail and so find root causes of hazardous consequences. Another advantage is the ability to identify also potential hazards which did not occur in the past and might be overlooked. The presented framework methodology uses a layer of protection analysis (LOPA) concept of independent protection layers (IPLs) testing. Control system integrated into the raw process design represents the first of various protection layers of the LOPA concept. As a case study, a CSTR chemical production with nonlinear behavior under Proportional-Integral-Derivative (PID) actions as the predominant type of classical feedback control strategy is used. The presented tool identifies hazardous regimes under conditions when control loop introduces hazardous consequences or even acts synergically with existing hazardous events. Risk derived from different consequences is ranked by the risk assessment matrix (RAM) as a part of the conventional quantitative HAZOP study.  相似文献   

4.
In Taiwan, process safety accidents often occur despite the prior implementation of process hazard analysis (PHA). One of the main reasons for this is the poor quality of the PHA process; with the main hazards not being properly identified, or properly controlled. Accordingly, based on the findings of 86 process safety management (PSM) audits, dozens of post-accident site resumption review meetings, and hundreds of PSM review sessions, this study examines the main deficiencies of management practice and PHA implementation in Taiwan, and presents several recommendations for improved PHA assessment techniques and procedures. The study additionally examines the feasibility for using PSM-related information, such as process safety information and process incident information, as a tool for further enhancing the PHA quality. Overall, the study suggests that, in addition to following the basic rules of PHA and requirements of OSHA (1992),management in Taiwan should also provide training in the enhanced assessment techniques proposed herein and take active steps to incorporate PSM information into the PHA framework in order to improve the general quality of PHA and reduce the likelihood of process safety accidents accordingly.  相似文献   

5.
As modern chemical plants are becoming more complex and bigger in scale, the associated chance of things going wrong is also increasing rapidly. Due to the flammable, explosive, toxic and corrosive nature of chemical process, any single accident may trigger a major catastrophe that brings tremendous environmental, social and economical loss. In order to prevent any accident from happening, hazard and operability (HAZOP) analysis has been brought in to monitor chemical process and provide early warning for signs of accident. However, most existing HAZOP is carried out manually, and there are always obstacles in terms of cost overrun and incompleteness of the analysis. To address the difficulties in current HAZOP method, this paper proposes a signed digraph (SDG)-based HAZOP analysis method. It is used to identify the most likely operating mistakes that may cause certain process variable deviating from its normal value, which is the main source of safety concern. A case study on polyvinyl chloride (PVC) plant is presented to demonstrate the effectiveness of SDG-based HAZOP analysis method in providing complete analysis result.  相似文献   

6.
HAZOP分析方法是目前危险性分析领域最盛行的分析方法之一,广泛地应用于石油化工行业。但是其分析过程仅依靠专家积累的知识与经验,不仅评价的内容不严格,而且分析的可信程度有限,对实际工作的指导意义不高,不能适应工业现场的要求。鉴于HAZOP分析方法中的不足,提出了基于SDG模型的HAZOP分析方法,并利用该方法对钻井作业过程进行了危险性分析。基于SDG模型的HAZOP分析方法从复杂系统的内部逻辑入手,进行深层次的推理,不仅提高了分析效率,而且分析所得结果的完备性较好。  相似文献   

7.
Hazard and Operability (HAZOP) studies are conducted to identify and assess potential hazards which originate from processes, equipment, and process plants. These studies are human-centered processes that are time and labor-intensive. Also, extensive expertise and experience in the field of process safety engineering are required. There have been several attempts by different research groups to (semi-)automate HAZOP studies in the past. Within this research, a knowledge-based framework for the automatic generation of HAZOP worksheets was developed. Compared to other approaches, the focus is on representing semantic relationships between HAZOP relevant concepts under consideration of the degree of abstraction. In the course of this, expert knowledge from the process and plant safety (PPS) domain is embedded within the ontological model. Based on that, a reasoning algorithm based on semantic reasoners is developed to identify hazards and operability issues in a HAZOP similar manner. An advantage of the proposed method is that by modeling causal relationships between HAZOP concepts, automatically generated but meaningless scenarios can be avoided. The results of the enhanced causation model are high quality extended HAZOP worksheets. The developed methodology is applied within a case study that involves a hexane storage tank. The quality and quantity of the automatically generated results agree with the original worksheets. Thus the ontology-based reasoning algorithm is well-suited to identify hazardous scenarios and operability issues. Node-based analyses involving multiple process units can also be carried out by a slight adjustment of the method. The presented method can help to support HAZOP study participants and non-experts in conducting HAZOP studies.  相似文献   

8.
An extended hazard and operability (HAZOP) analysis approach with dynamic fault tree is proposed to identify potential hazards in chemical plants. First, the conventional HAZOP analysis is used to identify the possible fault causes and consequences of abnormal conditions, which are called deviations. Based on HAZOP analysis results, hazard scenario models are built to explicitly represent the propagation pathway of faults. With the quantitative analysis requirements of HAZOP analysis and the time-dependent behavior of real failure events considered, the dynamic fault tree (DFT) analysis approach is then introduced to extend HAZOP analysis. To simplify the quantitative calculation, the DFT model is solved with modularization approach in which a binary decision diagram (BDD) and Markov chain approach are applied to solve static and dynamic subtrees, respectively. Subsequently, the occurrence probability of the top event and the probability importance of each basic event with respect to the top event are determined. Finally, a case study is performed to verify the effectiveness of the approach. Results indicate that compared with the conventional HAZOP approach, the proposed approach does not only identify effectively possible fault root causes but also quantitatively determines occurrence probability of the top event and the most likely fault causes. The approach can provide a reliable basis to improve process safety.  相似文献   

9.
HAZOP分析中LOPA的应用研究   总被引:6,自引:1,他引:5  
通过分析危险与可操作性研究(HAZOP)方法的不足和保护层分析(LOPA)方法的功能,提出将LOPA融入HAZOP分析中,能进一步提高HAZOP的事故预防能力和丰富HAZOP的分析结果。介绍LOPA基本方法,阐述LOPA融入HAZOP的机理、衔接关系及分析步骤,并通过一个化工工艺流程危险性分析实例说明LOPA的作用及如何将LOPA融入HAZOP分析中。结果表明:在HAZOP分析中融入LOPA方法,能实现对现有保护措施的可靠性进行量化评估,确定其消除或降低风险的能力,从而寻求是否需要附加减少风险的安全保护措施。  相似文献   

10.
The main purpose of hazard and operability (HAZOP) analysis is to identify the potential hazards in the process design which nowadays is generally developed through a computer aided design (CAD) package. Due to the time and effort consuming nature of HAZOP, it is not done in every engineering firm for every design project. To make HAZOP an integral part of process design, an integration framework is proposed in this paper to seamlessly integrate the commercial process design package Smart Plant P&ID (SPPID, Intergraph) with one of the HAZOP expert systems (named as LDGHAZOP) developed by authors. This integration makes it possible to perform HAZOP analysis easily at anytime of the whole lifecycle of a chemical plant as long as the process design is available, which might help the improvement of design quality. One industrial case study is used to illustrate the ability of the integrated system.  相似文献   

11.
HAZOP analysis is a process hazard analysis method that has been widely applied both within and outside the chemical processing industries. This paper presents a design method for a process safety data management program for petrochemical plants based on HAZOP analysis and demonstrates the steps of application involved in building a process safety data management system for an ethylene oxide/ethylene glycol production plant. Firstly, the production data files and relevant documents of the plants should be classified and stored in the program database as reference documents and treatment schemes for coping with abnormal situations should be collected and summarized as guidance documents. Secondly, the HAZOP analysis method is employed to identify all the dangerous deviations possibly existing in the production process of the ethylene oxide/ethylene glycol plant. Then, the relationships among the deviations, the reference documents and the guidance documents should be considered and evaluated. Finally, each dangerous deviation will be given a corresponding reference document and guidance document. The reference documents and guidance documents stored in the expert system can be utilized to help operators solve the corresponding technical problems and cope with abnormal situations. The process safety data management program will contribute to the identification, analysis and resolution of operation problems. When an abnormal situation occurs, according to the deviations exhibited in the system, the necessary reference documents and guidance documents will be quickly consulted by the operators, and an appropriate decision will be made to address the abnormal situation. Therefore, by using the process safety data management program, plant security and human safety in the petrochemical industries will be improved.  相似文献   

12.
HAZOP方法通过结构化和系统化的方式识别潜在的危险与可操作性问题,在化工安全评价中得到了广泛应用.但其做为一种定性评价方法,定量化是其发展的趋势.探讨了定量化风险矩阵技术在HAZOP分析中应用的问题,研究提出了将火灾、爆炸危险指数方法应用于风险矩阵事故后果严重度的计算和将事故树评价方法应用于风险矩阵事故发生概率的计算,实现了风险矩阵的定量化并应用于不饱和聚酯树脂工艺HAZOP分析,为HAZOP分析的定量化提供了一种新的技术方法.  相似文献   

13.
工艺过程危险有害因素辨识的研究   总被引:1,自引:0,他引:1  
鉴于化工企业工艺过程的特殊性,笔者建议其危险、有害因素的辨识可以在直观经验分析法和系统安全分析法的基础上,结合危险和可操作性研究(HAZOP)的思想来进行辨识。笔者尝试性地给出了相关术语的说明、介绍辨识方法和操作程序,并分别从生产过程(包括化学反应、化工操作单元和物料输送)和工艺设备、装置角度,对其中的所包含的具体内容进行剖析,最后以电解过程举例说明,该方法可用于化工企业进行危险性因素辨识。  相似文献   

14.
石油化工装置HAZOP分析技术概率定量化研究   总被引:3,自引:0,他引:3  
分析化工装置定性风险识别技术--危险及可操作分析(HAZOP)技术定量改进的可行性,根据HAZOP分析专家意见,将HAZOP分析所得偏差进行定量化处理.采用层次分析法确定各专家影响权重,通过专家主观评判得到各原因下偏差发生的可能性,根据模糊数学方法将专家自然语言转换为模糊数,采用左右模糊排序法将区间[0,1]的模糊数转换为模糊失效概率值.实例验证表明,该方法能较好反映偏差实际发生概率,高效且便于计算机实现.  相似文献   

15.
Most current alarm systems used in chemical installations show poor performance due to alarm flooding. This study focuses on alarm management systems optimization using the deviation propagation relationship hidden in the hazard and operability study (HAZOP) report, which can be transformed into a critical information source for alarm optimization management. More concretely, this means matching the alarm tag number with the process deviations in the deviation column, possible cause column, and consequence column. Furthermore, a backtracking method and a reasoning method were established to identify the initial alarm and associated alarms. Besides, a root fault diagnosis was carried out. A method of detecting hardware faults and unreasonable alarm thresholds is established using alarm causality corresponding to the deviation causality and associated alarm generation-skipping tracing method. According to the severity of the consequence corresponding to the deviation, a determined alarm priority method is constructed. The results show that the deviation propagation relationship in the HAZOP report is clear, and the topological relationship is easy to build based on the deviation propagation relationship. With comprehensive and in-depth HAZOP analysis reports in China, the alarm management optimization technology based on adapted HAZOP reports shows good prospects for application and promotion.  相似文献   

16.
Accidents often occur in the petrochemical industry, which have a negative impact on society and the environment. Learning Process Safety Knowledge (PSK) from accident cases is essential to prevent accidents and improve safety level. Hazard and Operability Analysis (HAZOP) is a popular hazard risk analysis method. Its report contains large-scale PSK, which can provide safety analysis and decision support for the industry. Subject to the characteristics of PSK, existing researches mine them in the form of sequence labeling. However, there are two intractable problems that cause the PSK mined by the model to be inaccurate. (1) PSK in HAZOP is domain specific, which is rare or even absent in general-domain texts. (2) The entity boundaries are ambiguous. Most domain-specific entities for HAZOP lack boundary characters. Inaccurate security knowledge is not acceptable from the perspective of process safety engineering. To solve the problems, we present a PSK mining architecture with External Lexicon Prior knowledge called EDPMA, EDPMA is prior knowledge-based multi-task HAZOP knowledge mining model. Specifically, EDPMA consists of prior knowledge constructor and sequence labeling model. The prior knowledge constructor expresses prior knowledge in the form of word embedding by three steps. For the sequence annotation model, we improve its embedding and decoding layers. The former incorporated the word vectors generated by the prior knowledge constructor, and the latter added the task of entity boundary prediction. We conduct multiple evaluation experiments on HAZOP datasets. The experimental results show that the accuracy, recall and F1-score of the EDPMA model are 92.92%, 91.85% and 92.38% respectively, which is better than the existing research. Our study represents a meaningful attempt to introduce prior knowledge in HAZOP knowledge mining and makes an important contribution to intelligence the field of process safety.  相似文献   

17.
工艺危害分析强调运用系统的方法对危害进行辨识、分析,并采取必要的措施消除和减少危害。HAZOP分析能对工艺过程非常系统、全面的进行分析,但传统的HAZOP分析在量化风险时,对于偏差原因发生的可能性评价存在较大的主观性。本文对于没有统计资料的HAZOP分析偏差原因发生可能性,采用专家打分法,利用三角模糊数来表示其模糊发生概率。对于有统计资料的偏差原因,直接表示成三角模糊数。这种方法能够很好的表示HAZOP分析偏差发生概率。介绍了基于三角模糊数的HAZOP分析步骤,并在石油化工装置中进行了应用。这对HAZOP分析技术在石油化工装置中的推广具有重要意义。  相似文献   

18.
Recent years have seen a convergence of scenario-based Hazard and Operability (HAZOP) studies, Layer of Protection Analyses (LOPAs), and safety integrity level (SIL) determinations. These can all be performed using order-of-magnitude estimates for the initiating cause frequency, the effectiveness of protection layers, the severity of loss event consequences, and the inclusion of other risk-reduction factors. Conducting a HAZOP study or a HAZOP/LOPA study in this manner makes it possible to extend the study results to not only determine required SILs, but also to sum scenario risks by process unit and show the quantitative benefit of implementing risk-reduction measures. The aggregated risk can be compared to process-wide tolerable risk criteria, in addition to comparing each scenario to a risk matrix or risk magnitude. This presentation demonstrates how a true risk-based HAZOP study can be performed with little additional effort over that required for commonly performed cause-by-cause HAZOP studies, and how facility managers and engineers can then use the results when deciding on and implementing risk-reduction measures.  相似文献   

19.
Hazard and operability (HAZOP) studies constitute an essential step in the risk analysis of any chemical process industry and involve systematic identification of every conceivable abnormal process deviation, its causes and abnormal consequences. These authors have recently proposed optHAZOP as an alternative procedure for conducting HAZOP studies in a shorter span of time than taken by conventional HAZOP procedure, with greater accuracy and effectiveness [Khan, F. I. and Abassi, S. A., optHAZOP. An effective and efficient technique for hazard identification and assessment Journal of Loss Prevention in the Process Industries, 1997, 10, 191–204]. optHAZOP consists of several steps, the most crucial one requires use of a knowledge-based software tool which would significantly reduce the requirement of expert man-hours and speed up the work of the study team. TOPHAZOP (Tool for OPTmizing HAZOP) has been developed to fulfil this need.

The TOPHAZOP knowledge-base consists of two main branches: process-specific and general. The TOPHAZOP framework allows these two branches to interact during the analysis to address the process-specific aspects of HAZOP analysis while maintaining the generality of the system. The system is open-ended and modular in structure to make easy implementation and/or expansion of knowledge. The important features of TOPHAZOP and its performance on an industrial case study are described.  相似文献   


20.
基于动态SDG模型的间歇过程HAZOP方法研究   总被引:1,自引:0,他引:1  
危险与可操作性分析(HAZOP)是目前应用最为广泛的安全评价方法之一。然而,通过对国内外已实施的生产过程安全评价方法及相关计算机辅助安全评价软件调查发现,目前对间歇过程HAZOP分析的研究还较少。因此,将Petfi网与符号定向图(SDG)相结合,以SDG模型为主,Petri网模型为辅,建立专门针对间歇过程HAZOP分析的动态SDG模型。由于Petfi网可以准确描述间歇过程的离散事件特性,而SDG能够恰当描述间歇过程的连续特性,二者结合使该模型成为间歇过程HAZOP分析的有力工具。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号