首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
飞行事故预测的目的在于预防事故。为提高事故预防的针对性和有效性,必须加强预测,以增强预防飞行事故的主动性。在ARIMA和SVM基础上,提出一种飞行事故组合预测方法。首先建立ARIMA模型,用以描述历史数据中的线性关系;然后,对ARIMA模型的残差构建SVM模型,用以模拟数据中的非线性规律,两者预测值之和就是最后的预测结果。美国空军1954—1993年飞行事故损坏飞机万时率的实证分析结果表明:利用该方法所建立的模型,能够对飞行事故作出较为准确的预测,模型精度总体优于单一的ARIMA或SVM模型。  相似文献   

2.
煤与瓦斯突出预测的支持向量机(SVM)模型   总被引:2,自引:4,他引:2  
基于支持向量机(SVM)分类算法,考虑影响煤与瓦斯突出的主要因素,建立了煤与瓦斯突出预测的SVM模型。该模型选取开采深度、瓦斯压力、瓦斯放散初速度、煤的坚固性系数以及地质破坏程度5个指标作为模型输入量,同时将煤与瓦斯突出程度划分为无突出、小型突出、中型突出和大型突出4个等级,进而使其评判结果更为细化。以实测数据作为学习样本进行训练,建立相应判别函数对待判样本进行预测。通过算例分析,表明该模型的方法对煤与瓦斯突出预测的合理性与有效性,可以在实际工程中推广。  相似文献   

3.
为快速、精确预测含局部减薄缺陷的弯管爆破压力,首先验证显式非线性有限元模型的模拟精确性,然后以168组不同缺陷尺寸下20钢弯管爆破压力的有限元模拟数据作为学习样本,建立含局部减薄缺陷20钢弯管爆破压力预测的支持向量机(SVM)模型;其次利用交叉验证(CV)、遗传算法(GA)、粒子群算法(PSO)分别优化SVM模型;最后分析对比用于预测弯管爆破压力的3种优化SVM模型与ASME B31G-2009、DNV RP-F101、SHELL 92等3种通用规范的计算误差。结果表明:CV-SVM、GA-SVM、PSO-SVM等3种模型的预测误差均小于3种规范的计算误差,其最大相对误差分别为-2.33%、-3.4%和1.94%;说明SVM模型用于预测弯管爆破压力时操作简单、计算时间短、预测精度高、工程实用性好。  相似文献   

4.
针对瓦斯涌出传统的线性预测方法存在的问题,根据瓦斯涌出时间序列固有的确定性和非线性,利用混沌动力系统的相空间延迟坐标重构理论,结合基于机器学习理论的支持向量机(SVM),建立基于SVM理论的瓦斯涌出混沌时间序列预测模型。经Ⅱ1024回采工作面瓦斯涌出时间序列仿真计算,仿真结果显示该预测模型具有比传统的回归方法更好的泛化能力,预测方法具有很高的预测精度。同时,该模型具有以往传统机器学习的瓦斯涌出预测模型建立简便、训练速度快等优点。由于充分考虑瓦斯涌出时间序列的混沌性,并利用SVM预测的优良特性,使得预测更科学。  相似文献   

5.
基于支持向量机的煤与瓦斯突出预测研究   总被引:1,自引:0,他引:1  
为准确预测矿井煤与瓦斯突出的危险性,针对煤与瓦斯突出样本的不足从一定程度上制约了基于知识的方法在煤与瓦斯突出预测中的应用这一问题,利用支持向量机在小样本情况下具有较强识别能力的特点,提出了煤与瓦斯突出的支持向量机预测方法。对煤与瓦斯突出影响因素进行灰关联分析,提取特征向量。选用典型突出矿井的煤与瓦斯突出实例作为学习样本,以云南恩洪煤矿的突出实例作为预测样本,将支持向量机预测结果与其他预测结果进行对比。结果表明支持向量机模型能够满足煤与瓦斯突出预测的要求。  相似文献   

6.
为解决能用于煤与瓦斯突出预测模型的真实事故训练数据量小、数据集缺失严重的问题,提出采用数据挖掘多重填补(MI)算法填补事故数据中缺失参数,增大可用数据集,并将填补后的数据用于支持向量机(SVM)预测模型的训练与测试,选取K最近邻(KNN)算法与SVM进行对比.结果 表明:SVM数据填补前后的平均识别率分别为88.37%...  相似文献   

7.
针对国内航空公司对于重着陆的判断方法存在的不足,提出采用支持向量机(SVM)建立重着陆的智能诊断模型;分析对重着陆产生影响的相关因素,在力学基础上揭示了重着陆的产生原理;利用快速存取记录器中记录的多个飞行参数的信息,采用B737机型的实际样本数据进行训练和验证。结果表明:该方法能有效判断出是否发生重着陆,其准确率高达92.86%,证明该重着陆智能诊断方法具有较强实际应用价值,为后续研究奠定了基础。  相似文献   

8.
为了实现多环芳烃(PAHs)毒性的有效预测,提出应用定量构效技术对多环芳烃的空气-正辛醇分配系数(KOA)和致癌性进行预测。应用分子描述符和试验值确立构效关系,采用支持向量机算法(SVM)和人工神经网络算法(ANN)分别建立了PAHs的KOA回归预测模型和致癌性分类预测模型。利用网格划分(GS)、遗传算法(GA)、粒子群算法(PSO)对SVM进行参数寻优。应用均方误差(MSE)、拟合决定系数R2和分类准确率(Accuracy)分别对模型进行了验证与评价。结果表明,最佳回归预测模型GS-SVR的MSE为0.059 7,R2为0.913 0;最佳分类预测模型GA-SVC的Accuracy为95%。研究表明:应用SVM所建两种模型的稳定性和预测能力都优于应用ANN建立的模型;参数优化后模型的稳定性和预测能力得到了提高。  相似文献   

9.
导致施工人员不安全行为的因素众多,如何保证员工进行安全施工是施工企业亟待解决的问题。为分析施工人员安全行为的影响因素及作用机理,从社会资本理论、认知心理学理论和安全行为理论分析了安全行为的影响因素,并设计了相关调查问卷。在进行仿真分析前,采用遗传算法优化计算的方法筛选出了13个关键影响因素,降低了自变量之间的相关性,之后利用支持向量机(SVM)的方法对决策模型进行了仿真分析,并与BP神经网络模型做了对比。仿真结果表明:基于筛选出的关键影响因素的SVM仿真模型的精度和有效性大于BP神经网络模型,模型精度为0.00887,相关系数为88.4%,说明影响因素与安全行为之间具有较好的拟合关系。研究结论为企业衡量员工安全行为水平,提高员工安全行为能力和企业安全管理能力提供理论支持。  相似文献   

10.
提出了一种基于萤火虫改进麻雀搜索算法-支持向量机(FASSA-SVM)的轴承故障诊断方法。首先对轴承工况的振动信号变分模态分解(VMD)得到多个模态分量(IMFs),其次利用排列熵(PE)求解每种工况每个IMF的PE值作为特征参数输入至SVM中,最后利用FASSA方法优化SVM的惩罚因子、核参数并得到最优的轴承故障分类诊断效果。实验结果表明,FASSA-SVM方法的平均测试集诊断准确率高达99.8%,该诊断结果优于传统的萤火虫算法(FA)、优化麻雀搜索算法(SSA)。  相似文献   

11.
为提升煤与瓦斯突出预测准确度,减小数据缺失对煤与瓦斯突出预测的不利影响,提出1种基于链式多重填补马尔科夫链蒙特卡罗(MCMC)的麻雀搜索算法(SSA)优化支持向量机(SVM)预测模型。根据突出影响因素选取模型参数,运用MCMC对突出事故缺失值进行数据填补,采用SSA优化SVM,建立MCMC-SSA-SVM模型对填补后数据集进行预测,验证MCMC填补有效性和SSA优化性能;分别构建SVM、SSA-SVM、PSO-SVM、GAM-SVM、CMC-SVM、MCMC-PSO-SVM和MCMC-GA-SVM这7种模型进行突出预测,对比预测准确度,分析MCMC-SSA-SVM、MCMC-PSO-SVM和MCMC-GA-SVM的适应度。研究结果表明:MCMC填补后准确度均提升7.89个百分点以上,SSA的优化性能强于PSO和GA,MCMC-SSA-SVM预测准确度最高,为97.37%,泛化能力优于对比模型。研究结果可为煤与瓦斯突出预测研究提供借鉴和参考。  相似文献   

12.
基于RS-SVM模型的煤与瓦斯突出多因素风险评价   总被引:2,自引:0,他引:2  
为挖掘瓦斯突出风险与煤矿开采中各影响因素间的关系,应用支持向量机(SVM)理论从模式判别角度分析瓦斯突出风险与各地质因素组成的特征向量间的判别关系,基于粗糙集(RS)理论对待分析数据进行知识约简,提取核心判别指标,建立基于粗糙集-支持向量机(RS-SVM)的瓦斯突出风险判别模型。研究结果表明,RS知识约简方法可以很好地对原始数据中的冗余指标进行约简,通过对约简后指标数据进行SVM回归分析,可对煤与瓦斯突出模式进行很好的判别,所建立的瓦斯突出风险判别模型较一般SVM模型具有更高的预测精度,同时指标约简过程降低SVM运算中的复杂度,提高运算效率。  相似文献   

13.
一种新型的矿井突水分析与预测的支持向量机模型   总被引:2,自引:0,他引:2  
针对矿井突水样本数少,信息不完整的特点,提出了矿井突水分析的线性核H-SVMs模型。推导模型的理论推广误差公式,设计自顶向下基于SVM最大间隔逐层分类构造H-SVMs的新方法,并应用于实际的矿井突水预测。实验结果表明,线性核H-SVMs模型结构简单、泛化能力强,不仅能很好地预测矿井突水,而且其层次结构能正确反映突水的等级关系,各判别函数的法向量还可以指示各突水影响因素的权重,通过判决函数能有效分析突水影响因素并提取突水预测规则,为矿井突水预测提供了新的方法。  相似文献   

14.
根据定量构效关系(QSPR)原理,研究自燃点(AIT)与其分子结构间的内在定量关系。以265种有机化合物作为样本集,随机选择238种作为训练集,27种作为测试集,用遗传算法(GA)进行变量选择,分别建立多元线性回归(MLR)模型和支持向量机(SVM)模型研究有机物的自燃点与其分子结构间的关系。通过分析,发现造成模型预测效果不佳的原因是试验数据本身存在问题。通过对2个模型的比较,结果为GA-SVM模型明显优于GA-MLR模型,说明自燃点与其分子结构间具有很强的非线性关系。  相似文献   

15.
为预防事故发生,保障飞行安全,提出一种基于多生理信号和支持向量机(SVM)的飞行警戒疲劳检测方法,识别飞行员飞行警戒中的疲劳状态。首先,研究疲劳评价与检测方法,并基于自主开发的飞行警戒测试系统与多导生物反馈仪和眼动仪搭建试验平台;然后,采集飞行警戒作业中的心电、眼动、呼吸等多生理信号和主观疲劳自评值;再次,通过配对样本的非参数检验,提取敏感生理指标,并以此作为特征向量,通过机器学习训练,构建基于多生理信号和SVM的疲劳检测模型;最后,依据受试者工作特征(ROC)曲线和模型准确率,对比分析各疲劳检测模型的效果。结果表明:在飞行警戒疲劳状态下,作业者的多项生理指标均有显著变化;心电、眼动和呼吸等多生理信号融合较单一信号的疲劳检测效果好,其ROC曲线下面积为0.802。基于高斯径向基核函数(RBF)构建的疲劳检测模型训练及预测准确率可达93%和87.50%。基于多生理信号和SVM方法可以实现对飞行警戒疲劳状态的检测。  相似文献   

16.
基于支持向量机的入侵检测研究   总被引:1,自引:1,他引:1  
根据入侵检测和支持向量机的特点,提出基于最小二乘支持向量机异常检测方法,并建立基于支持向量机入侵检测的模型,对网络数据进行采集,提取特征,进行分类,分辨正常的数据和异常的数据。并在KDD CUP'99标准入侵检测数据集上进行实验,选取data_10_percent子集,把该数据集中的41个属性作为特征,将该子集最后一个属性label属性为:back,ipsweep,neptun,ports-weep和normal各200个数据进行测试。实证表明:该方法能获得较高检测率和较低误警率。  相似文献   

17.
自动安全换道是车辆实现无人驾驶的关键,为精确识别行驶车辆换道状态,保证行车安全,设计了一种基于多分类支持向量机(Multi-class Support Vector Machine,Multiclass SVM)的车辆换道识别模型。从NGSIM数据集中选取美国101公路车辆轨迹数据进行分类处理,并将车辆换道过程划分为车辆跟驰阶段、车辆换道准备阶段和车辆换道执行阶段。采用网格搜索结合粒子群优化算法(Grid Search-PSO)对SVM模型中惩罚参数C和核参数g进行寻优标定,利用多分类支持向量机换道识别模型对样本数据进行训练和测试,模型测试精度达97.68%。研究表明,模型能够很好地识别车辆在换道过程中的行为状态,为车辆换道阶段的研究提供支持。  相似文献   

18.
为对室内轰燃进行准确预测,针对室内轰燃样本的不足在一定程度上制约了其应用,为此运用SVM技术构建室内轰燃预测的数学模型。在小样本条件下,应用工具软件LIBSVM进行仿真,并将SVM模型预测结果和人工神经网络预测结果进行对比。结果显示,SVM技术能较好地解决小样本和模型预测精确度之间的矛盾,SVM模型其预测精度及可行性高于神经网络模型。实例表明,由于室内火灾受多种因素影响,传统的预测方法存在一定的局限性,而SVM模型预测法预测的结果与试验结果比较一致。  相似文献   

19.
为预防施工升降机安全事故的发生,利用数据库和支持向量机(SVM)算法预测施工升降机的安全风险.首先依据相关理论和施工升降机的特点,初步定性分析施工升降机的安全风险因素;然后利用施工升降机安全事故数据库管理系统统计分析施工升降机安全事故案例,细化安全风险因素,确定施工升降机安全风险预测指标;最后运用SVM算法构建施工升降...  相似文献   

20.
基于差异进化支持向量机的坑外土体沉降预测   总被引:1,自引:0,他引:1  
就用支持向量机(SVM)预测基坑外土体沉降而言,通过差异进化(DE)算法构造适合的决策函数十分重要。在确定坑外土体沉降函数的基本形式下,进行参数反演。后将得到的解析式作为SVM的决策函数,再进行核函数转换,从而使SVM的曲线拟合更加快速,预测更加准确。对大连地铁湾家车站基坑坑外土体的沉降数据的分析及预测的结果表明,使用SVM-DE算法在计算数据量、计算消耗时间和预测精度方面优于2种方法单独使用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号