首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper addresses the decolorization and degradation of acid dye by a heterogeneous photocatalytic process using immobilized nano-sized TiO2 particles as the photocatalyst. Sackcloth fiber was used as a support to immobilize the nano-sized TiO2 photocatalyst. The structural properties of the immobilized photocatalyst were characterized by XRD, SEM and EDX. UV–Vis absorption spectroscopy and the measurement of the chemical oxygen demand (COD) were also used for the process performance studies. The XRD results did not show significant changes in the structure of P25 as a consequence of the immobilization procedure. The formation of titania crystallites in the sackcloth fiber was confirmed by SEM/EDX. The photocatalytic activities of TiO2-coated sackcloth fiber catalyst were evaluated using Acid Black 26 as a model organic contaminant and using UV-A radiation. Experimental results showed that after 60 min, the degradation of Acid Black 26 with the immobilized TiO2 particles was higher than that with plain TiO2. Based on the COD results, after 3 h, the TiO2-coated sackcloth fiber effectively decomposed all of the organic compounds present in dye solution under the studied experimental conditions. The effects of the oxidant H2O2, initial dye concentration and pH on the photocatalytic degradation were also investigated. The presence of CO32? as a dissolved inorganic anion had the highest inhibitory effect on the decolorization of the dye, when compared with the other anions investigated. Kinetics analysis indicates that the photocatalytic decolorization rate of Acid Black 26 can be described by a pseudo-first-order model.  相似文献   

2.
In the present work, mesoporous simonkolleite–TiO2 composite was prepared with sol–gel method. The composite photocatalysts were characterized by X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS), and Raman spectroscopy. Also, surface area and particle size were analyzed using BET equation. The photocatalytic hydrogen production with simultaneous decolorization of Remazole Red (F3B) dye was investigated over TiO2 and simonkolleite–TiO2 composite under UV–vis light irradiation. It was worthy to be noted that the rate of hydrogen production over simonkolleite–TiO2 is higher that produced over TiO2. The maximum amount of photocatalytic-produced hydrogen was 2.1 mmol and 3.3 mmol within 240 min using TiO2 and simonkolleite–TiO2 composite, respectively. The specific production rate of hydrogen from photocatalytic conversion of dye was calculated. Improvement of apparent quantum yield (22.07%) after 5 h was achieved upon addition of simonkolleite to TiO2. This high apparent quantum yield proves that the system proposed in this study could be a hopeful approach toward using sunlight energy as outlook energy source. The obtained results suggested that a new process for H2 production from wastewater could be achieved. The process also provides a method for degradation of organic pollutants with simultaneous H2 production.  相似文献   

3.
This paper presents the photo-catalytic degradation of real refinery wastewater from National Refinery Limited (NRL) in Karachi, Pakistan, using TiO2, ZnO, and H2O2. The pretreatment of the refinery effluent was carried out on site and pretreated samples were tested at 32–37 °C in a stirrer bath reactor by using ultra-violet photo oxidation process. The degradation of wastewater was measured as a change in initial chemical oxygen demand (COD) and with time. Optimal conditions were obtained for catalyst type, and pH. The titanium dioxide proved to be very effective catalysts in photo-catalytic degradation of real refinery wastewater. The maximum degradation achieved was 40.68% by using TiO2 at 37 °C and pH of 4, within 120 min of irradiations. When TiO2 was combined with H2O2 the degradation decreased to 25.35%. A higher reaction rate was found for titanium dioxide. The results indicate that for real refinery wastewater, TiO2 is comparatively more effective than ZnO and H2O2. The experiments indicated that first-order kinetics can successfully describe the photo-catalytic reaction. The ANOVA results for the model showed satisfactory and reasonable adjustment of the second-order regression model with the experimental data. The ANOVA results also showed that pH is significant than reaction time and catalyst dosage of TiO2; and in case of ZnO, reaction time is significant than pH and catalyst dosage. This study proves that real refinery wastewater reacts differently than synthetic refinery wastewater, oil field produced water or oil water industrial effluent.  相似文献   

4.
Sludge protein foaming solution was effectively decolorized and deodorized by gamma irradiation in the presence of hydrogen peroxide. The existence of a synergetic effect on the decolorization and the deodorization was demonstrated by means of UV/vis spectrophotometry, chemical, and sensory analyses every 14 days during 98 days of storage. Furthermore, the foamability was measured using the Ross–Miles method. Results showed that color, odor, and foamability of irradiated samples under hydrogen peroxide oxidation were significantly improved. Sensory evaluation indicated that irradiated samples under hydrogen peroxide oxidation were better than nonirradiated samples in odor, and color. Finally, a preliminary cost analysis revealed that 60Co γ-ray/H2O2 process was more cost-effective than the H2O2 alone.  相似文献   

5.
Attention has been focused on the treatment of lignite-fired flue gas in order to use lignite in an environmentally friendly way – (i) low-CO2 emission, (ii) production of a valuable by-product, (iii) no discharge of wastewater, (iv) direct removal of SO3 (strong toxicity), and (v) treatment of high SO2 concentration. Based on these criteria, electron beam irradiation with ammonia injection was tested on a semi-pilot scale: 800 Nm3 h?1 flow rate, 5500 ppm SO2, 70 ppm NOx, 22% flue gas moisture, and 75–80 °C at the reactor outlet.As an energy-saving measure, a low dose (5 kGy) of irradiation was applied: the problem lay in the by-product quality. It is considered that (NH4)2SO3 and NH4HSO3 produced by thermal reactions are oxidized to form (NH4)2SO4 (fertilizer) by an electron beam. However, not all reactions were complete because the by-product contained small amounts of H2SO4 and NH2SO3NH4 (herbicide), so a vegetable pot test was performed to study the by-product quality: no adverse effect was observed. It is inferred from the pot test that slightly acidic soil may protect vegetables from disease and a small amount of NH2SO3NH4 probably affects woody species and not herbaceous species.It is concluded that the electron beam system is noted as a multi-component pollution control process (removal of NOx, SO3, SO2 and dioxins) and this system will contribute to environmentally friendly use of lignite as well as agricultural productivity via fertilizer supply.  相似文献   

6.
Hydrogen peroxide (H2O2), historically, due to its broad applications in the chemical industries, has caused many serious fires and explosions around the world. Its thermal hazards may also be incurred by an incompatible reaction with other chemicals, and a runaway reaction may be induced in the last stage. This study applied thermal analytical methods to explore the H2O2 leading to these accidents by incompatibility and to discuss what might be formed by the upset situations. Thermal hazard analysis contained a solvent, propanone (CH3COCH3, so-called acetone), which was deliberately selected to mix with H2O2 for investigating the degree of thermal hazard. Differential scanning calorimetry (DSC) and vent sizing package 2 (VSP2) were employed to evaluate the thermal hazard of H2O2. The results indicated that H2O2 is highly hazardous while mixed with propanone, as a potential contaminant. The time to maximum rate (TMR) was used as emergency response time in the chemical industries. Therefore, TMR of H2O2 was calculated to be 70 min for runaway reaction (after T0) and TMR of H2O2/propanone was discovered to be 27 min only. Fire and explosion hazards could be successfully lessened if the safety-related data are properly imbedded into manufacturing processes.  相似文献   

7.
Thermal degradation of triacetone triperoxide (TATP) was studied using differential scanning calorimetry (DSC) and gas chromatography/mass spectrometry (GC/MS). TATP, a potential explosive material, is powerful organic peroxide (OP) that can be synthesized by available chemicals, such as acetone and hydrogen peroxide in the laboratory or industries. The thermokinetic parameters, such as exothermic onset temperature (T0) and heat of decomposition (ΔHd), were determined by DSC tests. The gas products from thermal degradation of TATP were identified using GC/MS technique.In this study, H2O2 was mixed with propanone (acetone) and H2SO4 catalysis that produced TATP. The T0 of TATP was determined to be 40 °C and Ea was calculated to be 65 kJ/mol. A thermal decomposition peak of H2O2 was analyzed by DSC and two thermal decomposition peaks of H2O2/propanone were determined. Therefore, H2O2/propanone mixture was applied to mix acid that was discovered a thermal decomposition peak (as TATP) in this study. According to risk assessment and analysis methodologies, risk assessment of TATP for the environmental and human safety issue was evaluated as 2-level of hazard probability rating (P) and 6-level of severity of consequences ratings (S). Therefore, the result of risk assessment is 12-point and was evaluated as “Undesirable” that should be enforced the effect of control method to reduce the risk.  相似文献   

8.
In this study, recalcitrant total phenol (TPh) and organic matter removal were investigated at olive mill wastewater (OMW) in sequential Coagulation and Fenton system. This study focused on different operational parameters such as pH, H2O2, and Fe2+ dosages, and [Fe2+]/[H2O2] ratios. The optimum conditions were determined as; pH = 3; [Fe2+] = 2.5 g/L; [Fe2+]/[H2O2] = 2.5. A higher treatment efficiency was achieved at sequential Coagulation and Fenton system (COD, 65.5%) and TPh, 87.2%), compared to coagulation process (COD, 51.4%; total organic carbon (TOC), 38.6% and total nitrogen (TN) 52.1%). This study demonstrated that the Coagulation and Fenton process has a potential for efficient removal of phenolic pollutants from wastewater.  相似文献   

9.
Pd based membrane provides an inherently safer way to handle flammable mixture of hydrogen and oxygen, as it could selectively isolate hydrogen from other gases. However, due to their susceptibility to hydrogen embrittlement, pure Pd membranes are not suitable for processes at low temperature. To solve this problem, body-centered cubic (bcc)-PdCu alloy membranes were prepared by the combination of electroplating and electroless plating. The hydrogen permeation rate (JH2), N2 leak rate (JN2) and H2/N2 selectivity (αH2/N2) remained stable through 200 h continuous operation in H2 at 298 K and ΔPH2 = 100 kPa. The excellent low-temperature tolerance of bcc-PdCu membranes rendered them ideal materials for the capture and activation of hydrogen during the direct hydrogen peroxide synthesis from hydrogen and oxygen. The reaction could be performed safely within the explosive limit of hydrogen/oxygen by feeding the gases separately from the opposite sides of the membrane with no direct contact. 60 mmol m−2 h−1 formation rate, 40% H2O2 selectivity, and a nearly 100% hydrogen conversion was reached at 298 K, 500 kPa.  相似文献   

10.
Oxidative disintegration of municipal waste activated sludge (WAS) using conventional Fenton (Fe2+ + H2O2, CFP) and Fenton type (Fe0 + H2O2, FTP) processes was investigated and compared in terms of the efficiency of sludge disintegration and enhancement of anaerobic biodegradability. The influences of different operational variables namely sludge pH, initial concentration of Fe2+ or Fe0, and H2O2 were studied in detail. The optimum conditions have been found as catalyst iron dosage = 4 g/kg TS, H2O2 dosage = 40 g/kg TS and pH = 3 within 1 h oxidation period for both CFP and FTP. Kinetics studies were performed under optimal conditions. It was determined that the sludge disintegration was happened in two stages by both processes: rapid and subsequent slow disintegration stages and rapid sludge disintegration stage can be described by a zero-order kinetic model. The effects of oxidative sludge disintegration under the optimum conditions on anaerobic digestion were experienced with biochemical methane potential (BMP) assay in batch anaerobic reactors. Total methane production in the CFP and FTP pre-treated reactors increased by 26.9% and 38.0%, relative to the untreated reactor (digested the raw WAS). Furthermore, the total chemical oxygen demand reductions in the pre-treated reactors were improved as well.  相似文献   

11.
Coal-mine gas disaster is one of the most serious coal-mine disasters in China. The main component of coal-mine gas, methane is chemically stable and very difficult to be degraded by conventional methods. Hydroxyl radical (OH), due to strong oxidizing ability and high electro-negativity, is the primary degradation source of atmospheric methane. In the present study, methane degradation using hydroxyl radicals generated by Fenton’s reagent, Fe2+/H2O2, has been carried out in the self-designed bubbling reactor. The effects of H2O2 concentration, dosage of FeSO4·7H2O and initial pH value on methane removal efficiency were investigated respectively. It has been found that the optimal reaction conditions were 100 mM of hydrogen peroxide, 2.00 mM of ferrous ion and initial pH value of 2.5. Under optimal conditions, the removal efficiency of methane reached 25% after 30 min. The preliminary experimental results unambiguously demonstrate that the degradation of methane using hydroxyl radicals generated by Fenton’s reagent is feasible.  相似文献   

12.
13.
Highly photoactive iodine-doped titanium dioxide (I-doped TiO2) photocatalysts were synthesized to degrade aqueous bisphenol A (BPA) under irradiation by visible light and sunlight. The band gap energies of TiO2 and I-doped TiO2 (I/Ti mole ratio = 0.5%) were 3.01 and 3.04, and the BPA photodegradation rate constants were 1.61, and 5.11 h−1, respectively. The most probable reaction mechanism was proposed to involve IO4 and IO3 as electron acceptors that generate an inductive effect, increasing the photocatalytic efficiency of TiO2. Results indicated that I-doped TiO2 not only acted favorably as a photocatalyst, but also exhibited considerable mineralization effects. In addition, a recycling test after ten experiments demonstrated the stability and reusability of the photocatalyst.  相似文献   

14.
Experimental and theoretical studies were conducted to investigate the pyrophoricity and water-reactivity risks associated with employing sodium alanate (NaAlH4) complex metal hydride in on-board vehicular hydrogen (H2) storage systems. The ignition and explosivity of NaAlH4 upon exposure to oxidizers in air or water were attributed to the spontaneous formation of stable hydroperoxyl intermediates on the NaAlH4 surface and/or H2 production, as well as the large driving force for NaAlH4 conversion to favorable hydroxide products predicted by atomic and thermodynamic modeling. The major products from NaAlH4 exposure to air: NaAl(OH)4, gibbsite and bayerite Al(OH)3, and Na2CO3 observed by XRD, were identified to be formed by surface-controlled reactions. The reactivity risks were significantly minimized, without compromising de-/re-hydrogenation cyclability, by compacting NaAlH4 powder into wafers to reduce the available surface area. These core findings are of significance to risk mitigation and H2 safety code and standard development for the safe use of NaAlH4 for on-board H2 storage in light-duty vehicles.  相似文献   

15.
The use of different lower and higher alcohols viz; methanol, ethanol, n-propanol and n-octanol, for the synthesis of methyl, ethyl, propyl and octyl fatty acid esters by transesterification of vegetable oil (triglycerides) with respective alcohols also known as ‘Bio-diesel’ and ‘Bio-lubricants’ was studied in detail. The reactions were carried out in a batch process. The activity with different supports like clay (K-10), activated carbon, ZSM-5, H-beta and TS-1 were compared. The superacids (heteropolyacids, HPA) viz; Dodeca-Tungstophosphoric acid [H3PO4·12 WO3·xH2O] (TPA) and Dodeca-Molybdo phosphoric acid ammonium salt hydrate [H12Mo12N3-O40P + aq] (DMAA) was used to increase the acidity and so the activity by loading on the most active support viz; clay (K-10). These HPA loaded on clay as a catalyst was used for the following study: effect of percent HPA loading on clay, effect of different vegetable oils, effect of different alcohols on the triglyceride conversion based on glycerol formation and selectivity based on alkyl esters formation. The data is compared at the best-optimized identical set of operating reaction conditions: 170 °C, 170 rpm, catalyst loading: 5% (w/w of reaction mixture), molar ratio (oil: alcohol): 1:15 and time on stream of 8 h. The generated data is also evaluated based on the reported one.  相似文献   

16.
An efficient and eco-friendly oxidative bromination reaction of phenol has been achieved by treatment with KBr–H2O2 in the presence of a catalytic amount ammonium salt of molybdophosphoric acid or phosphotungstic acid that supported on silica, which were synthesized by sol–gel method. The physicochemical characterization indicated that supported catalysts still retained its Keggin type and the particles were well dispersed onto the surface of silica support. The evaluated results of liquid phase bromination of phenol showed that these catalysts exhibited high catalytic oxybromination activity and high para substituted selectivity, and good stability was also observed after recycling three times. Meanwhile, no highly toxic and corrosive materials were used and formed in the reaction process, which makes this process environmentally benign. The influences of the reaction time, catalyst amount and solvent on oxidative bromination reaction were also investigated.  相似文献   

17.
This paper aims to develop quantitative insights based on measured deflagration parameters of hybrid mixtures of activated carbon (AC) dust and hydrogen (H2) gas in air. The generated experimental evidence is used to reject the claim of the null hypothesis (H0) that severity of deflagrations of H2/air mixtures always bound the severity of deflagrations of heterogenous combustible mixtures of AC dust/H2/air containing the same H2 concentrations as in the H2/air binaries. The core insights of this investigation show that the maximum deflagration pressure rise (ΔPMAX) and maximum rate of pressure rise ((dP/dt)MAX) of this hybrid mixture are greater than those corresponding to deflagrations of H2/air mixtures for all the dust and H2 concentrations being examined. The deflagration severity indices (KSt and ES) of the hybrid mixture containing 29 mol% H2 are found to be greater than those of the H2/air mixture containing 29 mol% H2. Also, the minimum explosible concentration (MEC) of the hybrid mixture is lower than that of the AC dust in air only. The insights gained should lead to better realization of the severity of a postulated safety-significant accident scenario associated with on-board cryoadsorption H2 storage systems for fuel-cell (FC) powered light-duty vehicles. The identified insights could also be relevant to other industrial processes where combustible dusts are generated in the vicinity of solvent vapors. Moreover, these insights should be useful for supporting quantitative risk assessment (QRA) of on-board H2 storage systems, designing improved safety measures for cryoadsorption H2 storage tanks, and guiding H2 safety standards and transportation regulations.  相似文献   

18.
Corrosion is one of the most significant contributors to structural degradation in process industries. It causes process equipment failure, which can led to severe safety issues. One approach to address this concern is to provide a preventive barrier-coating to equipment. Due to its superior reductive property, zinc is usually employed as a sacrificial anode in conventional corrosion-resistance methods. Nickel is also used to both mechanically strengthen the barrier and improve overall corrosion resistance; therefore, zinc, zinc-nickel alloys, and zinc-nickel-oxide composite coatings are commonly employed for anti-corrosion purposes. The complexation of zinc and nickel ions by agents (citrate, acetate and EDTA) can stabilize the electrodeposition bath and extend the pH of Ni(OH)2 and ZnO precipitation to improve corrosion resistance in the resultant coating. This paper reviews the challenge with these type of coatings and presents progress in Zn and Zn-Ni composite corrosion resistance coatings co-deposited with Al2O3, TiO2, ZrO2, SiO2, and Fe2O3 as means of corrosion control to reduce the probability of process equipment failure due to corrosion, which will improve the overall safety and reliability of processing equipment.  相似文献   

19.
On the Metropolitan Expressway in Tokyo, a tank car exploded because it was carrying hydrogen peroxide (H2O2) in a compartment in which copper chloride (CuCl2) remained. Although the main cause of the accident was trivial, the background on the accident suggested that an induction period in the reaction led to a mistake. This report describes the experimental investigation of the catalytic ability of CuCl2, and comparing it with two other copper(II) compounds (nitrate: Cu(NO3)2; and copper sulfate: CuSO4) and three iron(III) compounds (chloride: FeCl3; nitrate: Fe(NO3)3; and sulfate: Fe2(SO4)3).The experiments were performed using a reaction calorimeter. During the experiments at 35 °C, 2×10−5 mol of copper compounds slowly reacted with H2O2 and generated a precipitate. The iron compounds allowed the hydrogen peroxide to violently decompose. A 1×10−4 mol solution of CuCl2, however, produced a violent decomposition at 35 °C. At 15 °C, a moderate heat release occurred.Based on these results, the concentration and temperature dependence of the catalytic ability of CuCl2 were postulated to contribute to the induction period observed in the accident.  相似文献   

20.
Using micron-sized Al2O3 particles as carriers to grow carbon nanotubes (CNTs) under 700°C atmosphere of methane and hydrogen after pre-planted catalysts of Fe–Ni nanoparticles, those composite CNTs (CCNTs) have demonstrated several unique properties compared to CNTs—medium specific surface area and zeta potential, high adsorption capacity for metal ions, high recovery rate by acids, low decomposition heat for exothermal reaction, and so on. The adsorption behaviours of Pb2+, Cu2+ and Cd2+ in aqueous solutions by CCNTs are in good agreement with the Langmuir adsorption isotherm and second order kinetic model with maximum individual adsorption capacities of 67.11, 26.59 and 8.89 mg g−1. The individual and competitive adsorption behaviours indicated that the preference order of adsorption were Pb2+ > Cu2+ > Cd2+ for aluminum oxides, activated carbon, commercial CNTs, and CCNTs as well as other researchers’ CNTs. We suggest that future development of CNTs to combine with metals and/or other materials, such as TiO2, should consider attached to carriers or surface in order to avoid concerns on environment, health and safety. Thus, growing CNTs on Al2O3 particles to form CCNTs is an inherently safe approach for many promising environmental applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号