首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New methodologies for security risk assessment of oil and gas industry   总被引:1,自引:0,他引:1  
The oil and gas industry forms a vital and large part of the economy of any country. It provides crucial support to transport, manufacturing and energy sectors, produces valuable exports and provides huge employment. This industry along with fertilizer plants, petrochemical plants, etc., which handle hazardous chemicals, are potential targets for deliberate actions by terrorists, criminals and disgruntled employees. The process industries face different levels of threats. It is imperative to analyze the entire threat scenario before taking steps to counter it, otherwise each and every threat will have to be treated as most severe, thus resulting in a huge and wasteful expenditure.The Security Risk Factor Table (SRFT) and a Stepped Matrix Procedure (SMP) have been developed to assess the security risk of oil and gas industry as well as the other chemical process industries. While the SRFT deals with the effects of individual threats, the SMP deals with the cascading/domino effects which a lone, low probability event can cause. A case study of a refinery has been performed to show the application of the ideas presented.  相似文献   

2.
Accident investigations indicate that inadequate barrier management has been a main cause of many accidents in the process industry. In 2013, the Norwegian Petroleum Safety Authority issued a barrier management framework for the offshore oil and gas industry. The framework describes principles related to barrier management and may be a valuable guide for the entire process industry. However, the offshore industry faces several challenges when implementing the framework. This paper discusses these challenges and clarifies the central concepts and steps of barrier management. A key message is the need for clarity and integration in a systematic approach to risk and barrier management.  相似文献   

3.
Fugitive emission rate quantification in an oil and gas facility is an important step of risk management. There are several studies conducted by the United States Environmental Protection Agency (USEPA) and American Petroleum Institute (API) proposing methods of estimating emission rates and factors. Four major approaches of estimating these emissions, in the order of their accuracy, are: average emission factor approach, screening ranges emission factor approach, USEPA correlation equation approach, and unit-specific correlation equation approach. The focus of this study is to optimize the USEPA correlation equations to estimate the emission rate of different units in an oil and gas facility. In the developed methodology, the data available from USEPA (1995) is used to develop new sets of equations. A comparison between USEPA correlation equations and the proposed equations is performed to define the optimum sets of equations. It is observed that for pumps, flanges, open-ended lines, and others, the proposed developed equations provide a better estimation of emission rate, whereas for other sources, USEPA equations supply the better estimate of emission rate.  相似文献   

4.
为规范企业风险管理,在分析国内外各种先进风险管理技术的基础上,对风险矩阵法和保护层分析法(LOPA)进行了优化组合,开发了具有特色的组合风险评价方法,形成了具有鲜明特色的风险评价系统.风险评价系统可实现油气管道系统危害因素的系统识别、多层评价、分级管理、有序控制及监控.该风险评价系统在西部管道公司的长输油气管道系统得到了应用,实践效果表明,该风险评价系统能够规范公司风险管理工作,显著提升公司风险管理水平.  相似文献   

5.
Fire is the most prevalent accident in natural gas facilities. In order to assess the risk of fire in a gas processing plant, a fault tree analysis (FTA) and event tree analysis (ETA) has been developed in this paper. By utilizing FTA and ETA, the paths leading to an outcome event would be visually demonstrated. The framework was applied to a case study of processing plant in South Pars gas complex. All major underlying causes of fire accident in a gas processing facility determined through a process hazard analysis (PHA). Fuzzy logic has been employed to derive likelihood of basic events in FTA from uncertain opinion of experts. The outcome events in event tree has been simulated by computer model to evaluate their severity. In the proposed methodology the calculated risk has the unit of cost per year which allows the decision makers to discern the benefit of their investment in safety measures and risk mitigation.  相似文献   

6.
陆上油田油气集输站场安全现状评价探讨   总被引:7,自引:0,他引:7  
陆上油田油气集输站场安全现状评价的目的是根据该类站场安全管理和设施设备运行现状,查找出生产运行过程中各个系统存在的事故隐患,并提出针对性、技术可行性、经济合理性的安全对策措施建议。本文从安全管理和安全技术方面对油气集输站场安全现状评价的重点、存在的主要隐患、隐患产生的主要原因进行了阐述,对于加强油气集输站场的安全管理、生产过程中的安全运行和隐患治理资金的合理投入具有一定的现实意义。  相似文献   

7.
Haipu Bi  Hu Si 《Safety Science》2012,50(4):1112-1118
A novel method for dynamic risk assessment of oil spill accidents based on numerical simulation was presented in this paper. The dynamic risk assessment model was developed consisting of a comprehensive list of caused consequences like environmental damage, asset loss, health impact and social effect as well as emergency actions preventing these losses. Contributing events in the Mater Logic Diagram (MLD) of the dynamic risk assessment model were valued based on the simulated evolvement of oil contaminants under spill scenario on quasi-static fluid, which was obtained by coupling an oil spill model with hydrodynamic module in Jialing river of Three Gorges Reservoir in China after the impoundment of the reservoir to 175 m water level in 2010. Calculated result of dynamic risk as grade IV indicated that the assessed oil spill was not as catastrophic as we thought because of the slow transport of oil fractions on water surface and absence of dispersed oil in water body due to the quasi-static fluid, very gentle wind and effective emergency actions, as well as by the reason that rare agriculture or industrial crops exist in spill adjacent area.  相似文献   

8.
Aging urban oil and gas pipelines have a high failure probability due to their structural degradation and external interference. The operational safety of the aging urban oil and gas pipeline is challenged by different hazards. This paper proposes a novel methodology by integrating an index-based risk evaluation system and fuzzy TOPSIS model for risk management of aging urban oil and gas pipelines, and it is carried out by evaluating the priority of hazards affecting pipeline safety. Firstly, the hazard factors of aging urban oil and gas pipelines are identified to establish an index-based risk evaluation system. Subsequently, the fuzzy TOPSIS model is employed to evaluate the importance of these hazard factors and to decide which factors should be managed with priority. This work measures the importance of a hazard factor from three aspects, i.e. occurrence (O), severity (S) and detectability (D), and the weights of these three parameters are determined by a combination weight method. Eventually, the proposed methodology is tested by an industrial case to illustrate its effectiveness, and some safety strategies to reduce the operational risk of the pipeline are presented. The proposed methodology is a useful tool to implement more efficient risk management of aging urban oil and gas pipelines.  相似文献   

9.
In order to study a new leak detection and location method for oil and natural gas pipelines based on acoustic waves, the propagation model is established and modified. Firstly, the propagation law in theory is obtained by analyzing the damping impact factors which cause the attenuation. Then, the dominant-energy frequency bands of leakage acoustic waves are obtained through experiments by wavelet transform analysis. Thirdly, the actual propagation model is modified by the correction factor based on the dominant-energy frequency bands. Then a new leak detection and location method is proposed based on the propagation law which is validated by the experiments for oil pipelines. Finally, the conclusions and the method are applied to the gas pipelines in experiments. The results indicate: the modified propagation model can be established by the experimental method; the new leak location method is effective and can be applied to both oil and gas pipelines and it has advantages over the traditional location method based on the velocity and the time difference. Conclusions can be drawn that the new leak detection and location method can effectively and accurately detect and locate the leakages in oil and natural gas pipelines.  相似文献   

10.
Now in Russian Federation and other countries large-scale oil terminals (volume of one tank exceeds 100 000 m3, total volume of tanks exceeds 300 000 m3) are designed and constructed. Therefore fire safety of such objects becomes a very important task, solution of which is hardly possible without detail fire risk assessment. This study is aimed to a solution of this problem. Potential, individual and social risks were calculated. The potential risk was defined as a frequency of occurrence of hazardous factors of fires and explosions in a given point of space (the so-called risk contours). The individual risk was defined as a frequency of injuring a given person by hazardous factors of fires and explosions. Time of presence of this person in hazardous zones (near the hazardous installation) is taken into account during calculations of the individual risk. Social risk was defined as a dependence of frequency of injuring a given number of people by hazardous factors of fires and explosions on this number. In practice the social risk is usually determined on injuring not less than 10 people.

The oil terminal under consideration includes the following main parts: crude oil storage consisting of three tanks of volume 100 000 m3 each, input crude oil pipeline of diameter 0.6 m, crude oil pumps, output crude oil pipeline of diameter 0.8 m, auxiliary buildings and facilities. The following main scenarios of tank fires have been considered: rim seal fire, pool fire on a surface of a floating roof, pool fire on a total cross-section surface of the tank, pool fire in a dyke, explosions in closed or semiclosed volumes. Fires and explosions in other parts of the terminal are also taken into account. Effects of escalation of accidents are considered.

Risk contours have been calculated both for the territory of the terminal and for the neighbouring space. The potential risk for the storage zone is near 10−4–10−5 year−1, and at a distance 500 m from the terminal the potential risk values do not exceed 10−6 year−1. The values of the individual risk for various categories of workers are in the range of 10−5–10−6 year−1. Because of low number of the workers on the terminal and large distances to towns and villages the social risk value is negligible. These risk values are consistent with practice of the best oil companies, and fire hazard level of the terminal can be accepted as tolerable.  相似文献   


11.
In recent years, the global demand for liquefied natural gas (LNG) as an energy source is increasing at a very fast rate. In order to meet this demand, a large number of facilities such as platforms, FPSO (floating production, storage and offloading), FSRU (floating storage and regasification unit) and LNG ships and terminals are required for the storage, processing and transportation of LNG. Failure of any of these facilities may expose the market, companies, personnel and the environment to hazards, hence making the application of risk analysis to the LNG sector a very topical issue throughout the world. To assess the risk of accidents associated with LNG facilities and carriers, various risk analysis approaches have been employed to identify the potential hazards, calculate the probability of accidents, as well as assessing the severity of consequences. Nonetheless, literature on classification of the risk analysis models applied to LNG facilities is very limited. Therefore, to reveal the holistic issues and future perspectives on risk analysis of LNG facilities, a systematic review of the current state-of-the-art research on LNG risk analysis is necessary. The aim of this paper is to review and categorize the published literature about the problems associated with risk analysis of LNG facilities, so as to improve the understanding of stakeholders (researchers, regulators, and practitioners). To achieve this aim, scholarly articles on LNG risk analysis are identified, reviewed, and then categorized according to risk assessment methods (qualitative, semi-qualitative or quantitative; deterministic or probabilistic; conventional or dynamic), tools (ETA, FTA, FMEA/FMECA, Bayesian network), output/strategy (RBI, RBM, RBIM, facility siting, etc.), data sources (OREDA handbook, published literature, UK HSE databases, regulatory agencies' reports, industry datasets, and experts’ consultations), applications (LNG carriers and LNG fuelled ships, LNG terminals and stations, LNG offshore floating units, LNG plants), etc. Our study will not only be useful to researchers engaged in these areas but will also assist regulators, policy makers, and operators of LNG facilities to find the risk analysis models that fit their specific requirements.  相似文献   

12.
基于风险的概念,在对石油天然气钻井工程设计、工艺设备、施工管理、复杂情况和事故等总体分析的基础上,提出钻井工程风险量化方法———风险评估指数系统。此方法结合科学计算和专家经验,确定了固有风险指标、事故易发性指标和后果严重度指标等三个指标及量化标准,并将钻井工程风险划分为4个等级,最终建立了由指数体系、评分体系、风险分级标准组成的风险评估系统。本方法可用于专业机构的风险评估,也可用于安全管理部门的检查,以指导采取相应措施降低工程的危险性。  相似文献   

13.
A substantial amount of oil & gas products are transported and distributed via pipelines, which can stretch for thousands of kilometers. In British Columbia (BC), Canada, alone there are over 40,000 km of pipelines currently being operated. Because of the adverse environmental impact, public outrage and significant financial losses, the integrity of the pipelines is essential. More than 37 pipe failures per year occur in BC causing liquid spills and gas releases, damaging both property and environment. BC oil & gas commission (BCOGS) has indicated metal loss due to internal corrosion as one of the primary causes of these failures. Therefore, it is of a paramount importance to timely identify pipelines subjected to severe internal corrosion in order to improve corrosion mitigation and pipeline maintenance strategies, thus minimizing the likelihood of failure. To accomplish this task, this paper presents a Bayesian belief network (BBN)-based probabilistic internal corrosion hazard assessment approach for oil & gas pipelines. A cause-effect BBN model has been developed by considering various information, such as analytical corrosion models, expert knowledge and published literature. Multiple corrosion models and failure pressure models have been incorporated into a single flexible network to estimate corrosion defects and associated probability of failure (PoF). This paper also explores the influence of fluid composition and operating conditions on the corrosion rate and PoF. To demonstrate the application of the BBN model, a case study of the Northeastern BC oil & gas pipeline infrastructure is presented. Based on the pipeline's mechanical characteristics and operating conditions, spatial and probabilistic distributions of corrosion defect and PoF have been obtained and visualized with the aid of the Geographic Information System (GIS). The developed BBN model can identify vulnerable pipeline sections and rank them accordingly to enhance the informed decision-making process.  相似文献   

14.
Hurricanes Katrina and Rita hit the centre of the American petrochemical industry, shutting down eight refineries, hundreds of oil-drilling and production platforms, and many other industrial facilities. Furthermore, it triggered unprecedented numbers of hazardous-materials releases from industrial facilities and storage terminals onshore, as well as from oil and gas production facilities offshore in the Gulf of Mexico (GoM). In this paper, we analyse the damage caused by the two hurricanes on the offshore oil and gas industry. Hurricanes Katrina and Rita caused the largest number of destroyed and damaged platforms and pipelines, and the highest number of mobile offshore drilling units set adrift in the history of GoM operations. Following the hurricanes, changes have been proposed to operating and emergency procedures, maintenance requirements, and design practices including mooring practices for mobile offshore drilling units.  相似文献   

15.
Facilities life extension has caught the attention among the capital-intensive industries, like oil and gas. By extending the life cycle of the industrial assets, a wide range of benefits is obtained, comparing with other life ending management strategies. This article first contextualizes the implementation of the life extension concept in the oil and gas industry, showing global data about life extension. Despite the importance of the ageing process, due to its great economic impact and the risk it poses to the production sector, regulatory entities, even in countries more advanced in that sector or that have already experienced the extension process, developed only superficial material about the topic without defining a structured methodology for the assessment of the possibility of useful life extension. The available references do not allow a comprehensive analysis of that possibility, which highlights the importance the methodology proposed. Thus, this article proposes a guideline for the life extension process management, strengthening a framework containing the main evaluation stages, aiming to facilitate the analysis of issues related to ageing and to support the decision-making process. Lastly, real case studies regarding current life extension processes submitted to the Brazilian regulatory body were evaluated against the proposed framework stages, evidencing their lack of necessary details to support the decision-making. Upon the realization that the real cases identified do not allow for the assessment of the contribution and adequacy of the proposed framework in its entirety, the same was also applied to a hypothetical case. The latter was developed based on facts reported by a major operator in Brazil. The result was the determination that the use of the proposed methodology transformed the assessment of the possibility of life extension into a systematic and transparent process, leading to easier and better-founded decision-making procedures, and improving the management of the asset during its extended life.  相似文献   

16.
Operating several assets has resulted in more complexity and so occurrence of some major accidents in the refining industries. The process operations risk factors including failure frequency and the consequence components like employees' safety and environment impacts, operation downtime, direct and indirect cost of operations and maintenance, and mean time to repair should be considered in the analysis of these major accidents in any refinery. Considering all of these factors, the risk based maintenance (RBM) as a proper risk assessment methodology minimizes the risk resulting from asset failures. But, one of the main engineering problems in risk modeling of the complex industries like refineries is uncertainty due to the lack of information. This paper proposes a model for the risk of the process operations in the oil and gas refineries. The fuzzy logic system (FLS) was proposed for risk modeling. The merit of using fuzzy model is to overcome the uncertainty of the RBM components. This approach also can be accounted as a benchmark for future failures. A unified risk number would be obtained to show how the criticality of units is. The case study of a gas plant in an oil refinery is performed to illustrate the application of the proposed model and a comparison between the results of both traditional RBM and fuzzy method is made.For the case study, 26 asset failures were identified. The fuzzy risk results show that 3 failures have semi-critical level and other 23 failures are non-critical. In both traditional and fuzzy RBM methods, some condenser failures had the highest risk number and some pumps were prioritized to have the lowest risk level. The unit with unified risk number less than 40 is in the non-critical conditions. Proposed methodology is also applicable to other industries dealing with process operations risks.  相似文献   

17.
为了解国外石油天然气非金属管道缺陷检测技术发展现状,在调研相关文献报告、企业信息、设备手册基础上,介绍国外先进非金属管道检测技术及其原理、优缺点、具体设备、应用范围和未来发展趋势。研究结果表明:先进的超声相控阵和低能辐射电磁波技术对非金属管道检测难点(如:分层和接头处等特殊位置检测)具有较好的检测能力;非金属管道检测技术正在向自动化、集成化和在线监测方向发展;塑料和纤维增强复合材料大量应用于给排水、船舶、航空航天、汽车和风电叶片行业,非金属管道检测可以借鉴该类领域相关技术。研究结果可为保障石油天然气非金属管道安全运行、拓展行业应用范围、降低管道全生命周期成本提供参考。  相似文献   

18.
IntroductionWith the development of industries and increased diversity of their associated hazards, the importance of identifying these hazards and controlling the Occupational Health and Safety (OHS) risks has also dramatically augmented. Currently, there is a serious need for a risk management system to identify and prioritize risks with the aim of providing corrective/preventive measures to minimize the negative consequences of OHS risks. In fact, this system can help the protection of employees’ health and reduction of organizational costs. Method: The present study proposes a hybrid decision-making approach based on the Failure Mode and Effect Analysis (FMEA), Fuzzy Cognitive Map (FCM), and Multi-Objective Optimization on the basis of Ratio Analysis (MOORA) for assessing and prioritizing OHS risks. After identifying the risks and determining the values of the risk assessment criteria via the FMEA technique, the attempt is made to determine the weights of criteria based on their causal relationships through FCM and the hybrid learning algorithm. Then, the risk prioritization is carried out using the MOORA method based on the decision matrix (the output of the FMEA) and the weights of the criteria (the output of the FCM). Results: The results from the implementation of the proposed approach in a manufacturing company reveal that the score at issue can overcome some of the drawbacks of the traditional Risk Priority Number (RPN) in the conventional FMEA, including lack of assignment the different relative importance to the assessment criteria, inability to take into account other important management criteria, lack of consideration of causal relationships among criteria, and high dependence of the prioritization on the experts’ opinions, which finally provides a full and distinct risk prioritization.  相似文献   

19.
为完善国内输油气站场综合风险评价技术,提出一种站场综合风险评价模型。该模型基于模糊集理论,重点对传统的RCM与RBI技术进行改进与完善。将故障(失效)后果划分为伤亡后果、经济损失、环境影响和无形损失;采用模糊推理系统代替原有的算法进行计算设备风险,将动设备与静设备的风险转换为统一标度,得到站场综合风险值;最后采用雷达图显示站内设备的风险分布状况。实例分析表明,所建立的综合风险评价模型能够有效地解决定性风险与定量风险的融合问题,可为输油气站场的风险管理提供决策依据。  相似文献   

20.
Facility Siting is an important phase of project development. A critical stage is plot plan optimisation, where significant potential hazards are eliminated due to equipment spacing. In addition to ensuring appropriate compliance with minimum spacing requirements, occupied building studies to achieve compliance with the requirements of API 752 and API 753 could also be undertaken to optimise safety outcomes. The studies are done in three stages, where the first stage is hazard identification, second stage is consequence assessment and the third stage is risk assessment. Third stage assessments are only carried, if the consequence based siting recommendations are not practical to implement.This paper presents the challenges in estimating risk due to process hazards with a focus on selecting right event likelihood data. A comparison is presented on the variation in predicted risk levels based on equipment failure rates and leak frequencies.Case study of a plot plan optimisation study is undertaken with DNVGL Phast Risk and the variation in risk levels up to two orders of magnitude are recorded. Challenges such as adaption of data for local conditions, consistent definitions of failure, sample size of data, applicability of data play a significant role in identifying and correctly quantifying the risk levels. Such challenges and its impact on risk quantification are presented in this paper as well as its impact on facility siting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号