首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Calculating overpressure from BLEVE explosions   总被引:3,自引:0,他引:3  
Although a certain number of authors have analyzed the prediction of boiling liquid expanding vapour explosion (BLEVE) and fireball effects, only very few of them have proposed methodologies for predicting the overpressure from such explosions. In this paper, the methods previously published are discussed and shown to introduce a significant overestimation due to the erroneous thermodynamic assumptions—ideal gas behaviour and isentropic vapour expansion—on which they are based (in fact, they give the maximum value of overpressure which can be caused by a BLEVE). A new approach is proposed, based on the—more realistic—assumption of an adiabatic and irreversible expansion process; the real properties of the substance involved in the explosion are used. The two methods are compared through the application to a given case.  相似文献   

2.
After a short update of the current more accepted definition of BLEVE, the special features of water BLEVEs are analyzed. The stronger overpressure wave generated in the case of water as compared to that of other substances is justified in terms of volume change. Through a comparison with liquefied pressurized propane, three possibilities are analyzed: the simultaneous contribution of both the liquid and the preexisting vapor, the contribution of the liquid flash vaporization, and the contribution of the pre-existing vapor. Also a historical survey on a set of 202 BLEVE accidents –the largest sample of BLEVE accidents surveyed until now– is presented. LPG was the most common substances in this set of accidents. However, water and LNG (11% of water and 4% of LNG in the studied cases) have also been involved. Impact failure (44.8%) and human factor (30.3%) were the most common causes of BLEVEs. Transport, storage, process plants, and transfer were the activities in which more accidents occurred.  相似文献   

3.
So far, the prediction of blast wave generated from the Boiling Liquid Expanding Vapour Explosion (BLEVE) has been already broadly investigated. However, only a few validations of these blast wave prediction models have been made, and some well-established methods are available to predict BLEVE overpressure in the open space only. This paper presents numerical study on the estimation of the near-field and far-field blast waves from BLEVEs. The scale effect is taken into account by conducting two different scale BLEVE simulations. The expansion of pressurized vapour and evaporation of liquid in BLEVE are both modelled by using CFD method. Two approaches are proposed to determine the initial pressure of BLEVE source. The vapour evaporation and liquid flashing are simulated separately in these two approaches. Satisfactory agreement between the CFD simulation results and experimental data is achieved. With the validated CFD model, the results predicted by the proposed approaches can be used to predict explosion loads for better assessment of explosion effects on structures.  相似文献   

4.
In the event of a BLEVE, the overpressure wave can cause important effects over a certain area. Several thermodynamic assumptions have been proposed as the basis for developing methodologies to predict both the mechanical energy associated to such a wave and the peak overpressure. According to a recent comparative analysis, methods based on real gas behavior and adiabatic irreversible expansion assumptions can give a good estimation of this energy. In this communication, the Artificial Neural Network (ANN) approach has been implemented to predict the BLEVE mechanical energy for the case of propane and butane. Temperature and vessel filling degree at failure have been considered as input parameters (plus vessel volume), and the BLEVE blast energy has been estimated as output data by the ANN model. A Bayesian Regularization algorithm was chosen as the three-layer backpropagation training algorithm. Based on the neurons optimization process, the number of neurons at the hidden layer was five in the case of propane and four in the case of butane. The transfer function applied in this layer was a sigmoid, because it had an easy and straightforward differentiation for using in the backpropagation algorithm. For the output layer, the number of neurons had to be one in both cases, and the transfer function was purelin (linear). The model performance has been compared with experimental values, proving that the mechanical energy of a BLEVE explosion can be adequately predicted with the Artificial Neural Network approach.  相似文献   

5.
为评估LPG球罐发生BLEVE过程中超压与热耦合效应对化工企业抗爆控制室和避难所选址的影响,采用TNO多能法数学模型计算冲击波超压,采用多源数学模型计算火球热辐射。编写MATLAB计算程序,并应用ANSYS模拟二者破坏效应的耦合作用。LPG球罐发生BLEVE过程中,爆炸冲击波的传播速度、持续时间和火球的传播速度、持续时间不同,爆炸冲击波主要在燃料高速抛散的初期形成,之后基本与火球脱离。分别模拟计算冲击波超压和火球热辐射对抗爆控制室和避难所的影响,结果表明:抗爆控制室选址只需考虑爆炸冲击波的影响;避难所选址需要考虑冲击波超压和火球热辐射作用双重影响。在研究基础上提出,LPG球罐附近人员逃生的避难所应设置在球罐防火堤外紧邻防火堤处的地下,应具有抗震、防渗、防火、防中毒窒息等功能。人员应在BLEVE发生前进入避难所才能逃生。  相似文献   

6.
BLEVE: A new approach to the superheat limit temperature   总被引:2,自引:0,他引:2  
Several methods proposed for calculating the value of the superheat limit temperature were analysed. The results obtained indicate that the procedures based on the thermodynamic stability approach introduce a significant uncertainty into the final values, depending on which equation of state is used. We propose a new approach based on the energy balance in the initial liquid mass just before the explosion. The temperature obtained using this method, Tsl−E, corresponds to the situation in which the energy transferred adiabatically between the cooling liquid and the vaporising liquid fractions is at its maximum. This leads to a minimum content of energy in the remaining liquid. Although these two approaches are equivalent—the procedures based on the thermodynamic stability approach use also the minimum energy state as a criterion—the new proposed method only uses the properties of the substance to obtain Tsl−E. Thus, Tsl−E represents the behaviour of each substance as a function of its molecular structure, while this influence is lost if a simple equation of state is used. Finally, some considerations are made on the limitations of the superheat limit temperature as a criterion for establishing whether an explosion is or is not a BLEVE.  相似文献   

7.
A methodology for estimating the blast wave overpressure decay in air produced by a gas explosion in a closed-ended tunnel is proposed based on numerical simulations. The influence of the tunnel wall roughness is taken into account in studying a methane/air mixture explosion and the subsequent propagation of the resulting shock wave in air. The pressure time-history is obtained at different axial locations in the tunnel outside the methane/air mixture. If the shock overpressure at two, or more locations, is known, the value at other locations can be determined according to a simple power law. The study demonstrates the accuracy of the proposed methodology to estimate the overpressure change with distance for shock waves in air produced by methane/air mixture explosions. The methodology is applied to experimental data in order to validate the approach.  相似文献   

8.
The phenomenon “Boiling Liquid Expanding Vapor Explosion” (BLEVE) is one of the most common accidental events in the chemical industry and in the transport of dangerous goods. A bibliographic search in the Web of Science Core Collection reported 375 publications related to BLEVEs from 1979 to the present (August 10, 2022). A bibliometric analysis was conducted using the VOSviewer tool to allow a better understanding of the scientific knowledge on this phenomenon. A comprehensive overview of BLEVE research is presented in terms of annual publication, top journals, countries/regions with the highest productivity, authors and their cooperation networks, key terms, and co-citation analysis. The 375 publications cover 691 authors, 83 journals, 44 countries or territories and 290 institutions. The key publication (highest number of citations and co-citations) for understanding the BLEVE phenomenon is. The results obtained constitute a snapshot of the current state of the art on BLEVEs and can be applied to improve the understanding of research on this topic and establish new trends of research.  相似文献   

9.
汽车爆炸的超压分布规律实验研究   总被引:1,自引:0,他引:1  
测试了不同药量和不同车型的爆炸超压值,对汽车爆炸的超压分布规律进行了实验研究.结果表明,小汽车内发生炸药爆炸时,车门侧压力明显大于车尾部方向的压力,车外的冲击波超压值要大于空气中炸药爆炸的结果,前者约为后者的1.0~2.2倍.即车体对冲击波约束作用要小于车内底盘的反射作用.计算得到了实验中冲击波超压对人员的杀伤半径和最小安全距离,对汽车爆炸案件具有一定指导作用.冲击波的反射不可忽视,货车下地面炸药爆炸表现出明显的冲击波反射作用,测得超压值大于空气中爆炸的超压值.  相似文献   

10.
Relational demography research has emphasized a similarity–attraction paradigm in explaining employees' reactions to demographic differences from other organizational members. This study examined similarity–attraction (nondirectional age differences) and status incongruence (directional age differences) predictions of age difference effects. The nondirectional and directional differences between the age of a subordinate and the ages of his or her immediate and higher‐level supervisors were used to predict employee absenteeism, citizenship, and work change behaviors. Results revealed that there were more significant and marginally significant directional age difference effects than nondirectional age difference effects on work outcomes. The implications of these results for organizations are discussed. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

11.
A laneway support system provides an available way to solve problems related to ground movements in underground coal mines, but also poses another potential hazard. Once a methane/air explosion occurs in a laneway, inappropriate design parameters of the support system, especially the support spacing, likely have a negative influence on explosion disaster effects. The commercial software package AutoReaGas, a computational fluid dynamics code suitable for gas explosions, was used to carry out the numerical investigation for the methane/air explosion and blast process in a straight laneway with different support spacing. The validity of the numerical method was verified by the methane/air explosion experiment in a steel tube. Laneway supports can promote the development of turbulence and explosion, and also inhibit the propagation of flame and shock wave. For the design parameters in actual laneway projects, the fluid dynamic drag due to the laneway support plays a predominant role in a methane/air explosion. There is an uneven distribution of the peak overpressure on the same cross section in the laneway, and the largest overpressure is near the laneway walls. Different support spacing can cause obvious differences for the distributions of the shock wave overpressure and impulse. Under comparable conditions, the greater destructive effects of explosion shock wave are seen for the laneway support system with larger spacing. The results presented in this work provide a theoretical basis for the optimized design of the support system in coal laneways and the related safety assessments.  相似文献   

12.
The behavior of the blast impulse initiated by a point blast in the dusty air is investigated theoretically. It is shown that the jumps of parameters at the shock front in the dusty air follow other regularities in comparison with the case of an ideal gas, beginning from the distance of three dynamic radii, so at ten dynamic radii the difference in overpressure exceeds 60%. When the air heterogeneity is taken into account, substantial gradual changes of wave profile come over and the total blast wave impulse can't be determined by the front overpressure only. The known far asymptotic law takes no place in the point blast flow at the volume dust densities ρ20 > 3·10?3 kg/m3. In contrast to the ideal gas, the shock front discontinuity vanishes in the dusty air at a finite distance from its origin and the blast wave eventually turns into a dispersive wave without discontinuity. The wave structure changing is studied in the process of the shock wave transformation into the dispersive wave.  相似文献   

13.
为研究地下综合管廊燃气舱结构形式对燃气爆炸超压的影响,采用数值模拟的方法,改变燃气舱高度,通风分区长度和局部开口大小,分析不同情况下的燃气爆炸超压变化规律.结果表明:冲击波传播速度随燃气舱高度的增加而减小,随着高度的增加,超压峰值曲线由"驼峰状"逐渐变为两端高中间低的"盆形",爆炸过程产生的最大超压与高度成反比关系.超...  相似文献   

14.
为分析地铁上覆管道爆炸对乘客安全影响,采用基于超压冲击波阀值数值模拟,通过将泄漏气体能量等效为TNT当量,分析不同泄漏模式爆炸冲击波对地铁隧道及人员安全影响.结果表明:爆炸产生的超压冲击波对隧道及人员影响小于限值,不会造成人员伤亡,研究结果可为地下工程下穿油气管线安全影响分析提供理论支撑.  相似文献   

15.
Within the context of a quantitative risk analysis (QRA), the two main constituents used to describe petrochemical risks are, and have always been, consequence and probability. The consequences of hazardous material accidents are easy to apprehend – if a hazard is realized it can injure people or cause fatalities, damage equipment or other assets, or cause environmental damage. Frequencies for these consequences, on the other hand, are not as easy to understand. Process safety professionals develop event frequencies by evaluating historical data and calculating incident rates, which represent, in the QRA context, how often a release of a hazardous material has occurred. Incident rates are further modified by probabilities for various hole sizes, release orientations, weather conditions, ignition timing, and other factors, to arrive at unique event probabilities that are applied in the QRA. This paper describes the development of incident rates from historical database information for various equipment types, as well as defining a methodology for assigning hole size probabilities from the same data, such that a hole size distribution can be assigned within each QRA study. The combination of total incident rates and a hole size distribution relationship can then serve as a foundation within the frequency side of many QRA studies.  相似文献   

16.
The number of explosive attacks on civilian buildings has recently increased and the pattern of damage inflicted on structures when an explosion takes place at altitude remains quite difficult to predict. The primary aim of the work reported here was to enhance the understanding of how blast waves from an explosion at altitude interact with the ground and with a structure. Small-scale experiments were conducted using a propane–oxygen stoichiometric mixture as explosive. This approach is original because it models high-explosive detonation in terms of gaseous charge explosion using TNT equivalents. Several non-dimensional laws are expressed and validated by experiments. These relationships allow determination of the propagation of a blast wave and its interaction with a structure as a function of the position of the explosive charge when the explosion occurs at altitude. Then, from knowledge of the blast loading, using Hopkinson's scaling law and TNT equivalents, we can predict the interaction of blast waves with the ground and a structure on a real scale. Simulations were performed using the Autodyn code, and good correlation with the experimental results was obtained.  相似文献   

17.
In recent decades, vapor cloud explosions (VCEs) have occurred frequently and resulted in numerous personnel injuries and large property losses. As a main concern in the petrochemical industry, it is of great importance to assess the consequence of VCEs. Currently, the TNT equivalency method (TNT EM), the TNO multi-energy method (TNO MEM), and the Baker-Strehlow-Tang (BST) method are widely used to estimate the blast load from VCEs. The TNO MEM and BST method determine the blast load from blast curves based on the class number and the flame speed, respectively. To quantitatively evaluate the flame speed for the BST method, the experimental data is adopted to validate the confinement specific correlation (CSC) for the determination of the class number in the TNO MEM. As a bridge, a quantitative evaluation correlation (QEC) between CSC correlation and the flame speed is established and the blast wave shapes corresponding to different flame speeds are proposed. CFD software FLACS was used to verify the quantitative correlation with the numerical models of three geometrical scales. It is found that the calculated flame speeds by the QEC are in good agreement with the simulated ones. A petrochemical plant is selected as a realistic scenario to analyze the TNT EM, TNO MEM, BST method and FLACS simulations in terms of the positive-phase side-on overpressure and impulse at different distances. Compared with the flame speed table, the predicted overpressure from BST curves determined by the proposed QEC is closer to that from FLACS and more conservative. Furthermore, the predicted results of different methods are compared with each other. It is found that the estimated positive-phase side-on overpressure and impulse by the TNO MEM are the largest, and the estimated impulse by the TNT EM is the smallest. Moreover, the estimated overpressure and impulse are larger in the higher reactivity gas.  相似文献   

18.
Objectives: We examined associations among race/ethnicity, socioeconomic factors, and driving status in a nationally representative sample of >26,000 U.S. high school seniors.

Methods: Weighted data from the 2012 and 2013 Monitoring the Future surveys were combined and analyzed. We imputed missing values using fully conditional specification multiple imputation methods. Multivariate logistic regression modeling was conducted to explore associations among race/ethnicity, socioeconomic factors, and driving status, while accounting for selected student behaviors and location. Lastly, odds ratios were converted to prevalence ratios.

Results: 23% of high school seniors did not drive during an average week; 14% of white students were nondrivers compared to 40% of black students. Multivariate analysis revealed that minority students were 1.8 to 2.5 times more likely to be nondrivers than their white counterparts, and students who had no earned income were 2.8 times more likely to be nondrivers than those earning an average of ≥$36 a week. Driving status also varied considerably by student academic performance, number of parents in the household, parental education, census region, and urbanicity.

Conclusions: Our findings suggest that resources—both financial and time—influence when or whether a teen will learn to drive. Many young people from minority or lower socioeconomic families who learn to drive may be doing so after their 18th birthday and therefore would not take advantage of the safety benefits provided by graduated driver licensing. Innovative approaches may be needed to improve safety for these young novice drivers.  相似文献   


19.
为了进一步梳理和分析开敞空间可燃云爆炸冲击波超压传播规律及灾害动力响应方面的各项研究成果,推进可燃气体爆炸安全防控,减少人员伤亡和经济损失。在分析现有研究的基础上,总结开敞空间可燃气云爆炸冲击波超压传播规律及灾害动力响应研究等方面存在的不足,提出开敞空间多元混合气体爆炸冲击波超压传播规律研究、多影响参数下可燃气云爆炸冲击波超压传播规律定量分析、基于可燃气云爆炸冲击波超压作用下的承载体动力响应等未来研究的关键技术问题。  相似文献   

20.
Elongated congestion patterns are common at chemical processing and petroleum refining facilities due to the arrangement of processing units. The accidental vapor cloud explosion (VCE) which occurred at the Buncefield, UK facility involved an elongated congested volume formed by the trees and undergrowth along the site boundary. Although elongated congested volumes are common, there have been few evaluations reported for the blast loads produced by elongated VCEs. Standard VCE blast load prediction techniques do not directly consider the impact of this congested volume geometry versus a more compact geometry.This paper discusses an evaluation performed to characterize the blast loads from elongated VCEs and to identify some significant differences in the resulting blast wave shape versus those predicted by well-known VCE blast load methodologies (e.g., BST and TNO MEM). The standard blast curves are based on an assumption that the portion of the flammable gas cloud participating in the VCE is hemispherical and located at grade level. The results of this evaluation showed that the blast wave shape for an elongated VCE in the near-field along the long-axis direction is similar to that for an acoustic wave generated in hemispherical VCEs with a low flame speed. Like an acoustic wave, an elongated VCE blast wave has a very quick transition from the positive phase peak pressure to the negative phase peak pressure, relative to the positive phase duration. The magnitude of the applied negative pressure on a building face depends strongly on the transition time between the positive and negative phase peak pressures, and this applied negative phase can be important to structural response under certain conditions. The main purpose of this evaluation was to extend previous work in order to investigate how an elongated VCE geometry impacts the resultant blast wave shape in the near-field. The influence of the normalized flame travel distance and the flame speed on the blast wave shape was examined. Deflagration and deflagration-to-detonation transition regimes were also identified for unconfined elongated VCEs as a function of the normalized flame travel distance and flame speed attained at a specified flame travel distance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号