首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
In order to explore flame propagation characteristics during wood dust explosions in a semi-closed tube, a high-speed camera, a thermal infrared imaging device and a pressure sensor were used in the study. Poplar dusts with different particle size distributions (0–50, 50–96 and 96–180 μm) were respectively placed in a Hartmann tube to mimic dust cloud explosions, and flame propagation behaviors such as flame propagation velocity, flame temperature and explosion pressure were detected and analyzed. According to the changes of flame shapes, flame propagations in wood dust explosions were divided into three stages including ignition, vertical propagation and free diffusion. Flame propagations for the two smaller particles were dominated by homogeneous combustion, while flame propagation for the largest particles was controlled by heterogeneous combustion, which had been confirmed by individual Damköhler number. All flame propagation velocities for different groups of wood particles in dust explosions were increased at first and then decreased with the augmentation of mass concentration. Flame temperatures and explosion pressures were almost similarly changed. Dust explosions in 50–96 μm wood particles were more intense than in the other two particles, of which the most severe explosion appeared at a mass concentration of 750 g/m3. Meanwhile, flame propagation velocity, flame propagation temperature and explosion pressure reached to the maximum values of 10.45 m/s, 1373 °C and 0.41 MPa. In addition, sensitive concentrations corresponding to the three groups of particles from small to large were 500, 750 and 1000 g/m3, separately, indicating that sensitive concentration in dust explosions of wood particles was elevated with the increase of particle size. Taken together, the finding demonstrated that particle size and mass concentration of wood dusts affected the occurrence and severity of dust explosions, which could provide guidance and reference for the identification, assessment and industrial safety management of wood dust explosions.  相似文献   

2.
A 20 L spherical explosive device with a venting diameter of 110 mm was used to study the vented pressure and flame propagation characteristics of corn dust explosion with an activation pressure of 0.78–2.1 bar and a dust concentration of 400∼900 g/m3. And the formation and prevention of secondary vented flame are analyzed and discussed. The results show that the maximum reduced explosion overpressure increases with the activation pressure, and the vented flame length and propagation speed increase first and then decrease with time. The pressure and flame venting process models are established, and the region where the secondary flame occurs is predicted. Whether there is pressure accompanying or not in the venting process, the flame venting process is divided into two stages: overpressure venting and normal pressure venting. In the overpressure venting stage, the flame shape gradually changes from under-expanded jet flame to turbulent jet flame. In the normal pressure venting stage, the flame form is a turbulent combustion flame, and a secondary flame occurs under certain conditions. The bleed flames within the test range are divided into three regions and four types according to the shape of the flame and whether there is a secondary flame. The analysis found that when the activation pressure is 0.78 bar and the dust concentration is less than 500 g/m3, there will be no secondary flame. Therefore, to prevent secondary flames, it is necessary to reduce the activation pressure and dust concentration. When the dust concentration is greater than 600 g/m3, the critical dust concentration of the secondary flame gradually increases with the increase of the activation pressure. Therefore, when the dust concentration is not controllable, a higher activation pressure can be selected based on comprehensive consideration of the activation pressure and destruction pressure of the device to prevent the occurrence of the secondary flame.  相似文献   

3.
Flame propagation behaviors of nano- and micro-polymethyl methacrylate (PMMA) dust explosions were experimentally studied in the open-space dust explosion apparatus. High-speed photography with normal and microscopic lenses were used to record the particle combustion behaviors and flame microstructures. Simple physical models were developed to explore the flame propagation mechanisms. High-speed photographs showed two distinct flame propagation behaviors of nano- and micro-PMMA dust explosions. For nano-particles, flame was characterized by a regular spherical shape and spatially continuous combustion structure combined with a number of luminous spot flames. The flame propagation mechanism was similar to that of a premixed gas flame coupled with solid surface combustion of the agglomerates. In comparison, for micro-particles, flame was characterized by clusters of flames and the irregular flame front, which was inferred to be composed of the diffusion flame accompanying the local premixed flame. It was indicated that smaller particles maintained the leading part of the propagating flame and governed the combustion process of PMMA dust clouds. Increasing the mass densities from 105 g/m3 to 217 g/m3 for 100 nm PMMA particles, and from 72 g/m3 to 170 g/m3 for 30 μm PMMA particles, the flame luminous intensity, scale and the average propagation velocity were enhanced. Besides, the flame front became more irregular for 30 μm PMMA dust clouds.  相似文献   

4.
The explosion of the methane/air mixture and the methane/coal dust/air mixture under 40 J center spark ignition condition was experimentally studied in a large-scale system of 10 m3 vessel. Five pressure sensors were arranged in space with different distances from the ignition point. A high-speed camera system was used to record the growth of the flame. The maximum overpressure of the methane/air mixture appeared at 0.75 m away from the ignition point; the thickness of the flame was about 10 mm and the propagation speed of the flame fluctuated around 2.5 m/s with the methane concentration of 9.5%. The maximum overpressure of the methane/coal dust/air mixture appeared at 0.5 m. The flame had a structure of three concentric zones from outside were the red zone, the yellow illuminating zone and the bright white illuminating zone respectively; the thickness and the propagation speed of the flame increased gradually, the thickness of red zone and yellow illuminating zone reached 3.5 cm and 1 cm, the speed reached 9.2 m/s at 28 ms.  相似文献   

5.
For the case where a dust or gas explosion can occur in a connected process vessel, it would be useful, for the purpose of designing protection measures and also for assessing the existing protection measures such as the correct placement, to have a tool to estimate the time for flame front propagation along the connecting pipe. Measurements of data from large-scale explosion tests in industrially relevant process vessels are reported. To determine the flame front propagation time, either a 1 m3 or a 4.25 m3 primary process vessel was connected via a pipe to a mechanically or pneumatically fed 9.4 m3 secondary silo. The explosion propagation started after ignition of a maize starch/air mixture in the primary vessel. No additional dust was present along the connecting pipe. Systematic investigations of the explosion data have shown a relationship between the flame front propagating time and the reduced explosion over-pressure of the primary explosion vessel for both vessel volumes. Furthermore, it was possible to validate this theory by using explosion data from previous investigations. Using the data, a flame front propagation time prediction model was developed which is applicable for:
  • •gas and dust explosions up to a K value of 100 and 200 bar m s−1, respectively, and a maximum reduced explosion over-pressure of up to 7 bar;
  • •explosion vessel volumes of 0.5, 1, 4.25 and 9.4 m3, independent of whether they are closed or vented;
  • •connecting pipes of pneumatic systems with diameters of 100–200 mm and an air velocity up to 30 m s−1;
  • •open ended pipes and pipes of interconnected vessels with a diameter equal to or greater than 100 mm;
  • •lengths of connecting pipe of at least 2.5–7 m.
  相似文献   

6.
This study investigates dust explosions in vessel-pipe systems to develop a better understanding of dust flame propagation between interconnected vessels and implications for the proper application of explosion isolation systems. Cornstarch dust explosions were conducted in a large-scale setup consisting of a vented 8-m3 vessel and an attached pipe with a diameter of 0.4 m and a length of 9.8 m. The ignition location and effective dust reactivity were varied between experiments. The experimental results are compared against previous experiments with initially quiescent propane-air mixtures, demonstrating a significantly higher reactivity of the dust explosions due to elevated initial turbulence, leading to higher peak pressures and faster flame propagation. In addition, a physics-based model developed previously to predict gas explosion dynamics in vessel-pipe systems was extended for dust combustion. The model successfully predicts the pressure transients and flame progress recorded in the experiments and captures the effects of ignition location and effective dust reactivity.  相似文献   

7.
We investigate the PAN dust explosion inhibition behaviors of NaHCO3 and Al(OH)3 in a 20 L spherical explosion system and a transparent pipe explosion propagation test system. The results show that, in the standard 20 L spherical explosion system, the highest PAN dust explosion concentration is 500 g/m3, the maximum explosion pressure is 0.661 MPa, and the maximum explosion pressure increase rate is 31.64 MPa/s; adding 50% NaHCO3 and 60% Al(OH)3 can totally inhibit PAN dust explosion. In the DN0.15 m transparent pipe explosion propagation test system, for 500 g/m3 PAN dust, the initial explosion flame velocity is 102 m/s, the initial pressure is 0.46 MPa, and the initial temperature is 967 °C; adding 60% NaHCO3 and 70% Al(OH)3 can totally inhibit PAN dust explosion flames. Through FTIR and TG analyses, we obtain the explosion products and pyrolysis patterns of the explosion products of PAN dust, NaHCO3, and Al(OH)3. On this basis, we also summarize the PAN dust explosion inhibition mechanisms of NaHCO3 and Al(OH)3.  相似文献   

8.
The majority of experimental tests done on combustible dusts are performed in constant volume vessels that have limited or no optical access. Over the years, McGill University has been developing alternative experimental techniques based on direct observation of dust flames, yielding reliable fundamental parameters such as flame burning velocity, temperature and structure. The present work describes two new experimental set-ups allowing direct observation of isobaric and freely propagating dust flames at two sufficiently different scales to test the influence of scale on dust flame phenomena. In the laboratory-scale experiments, a few grams of aluminum powder are dispersed in transparent, 30 cm diameter latex balloons that allow for full visualization of the spherical flame propagation. In the field experiments, about 1 kg of aluminum powder is dispersed by a short pulse of air, forming a conical dust cloud with a total volume of about 5 m3. High-speed digital imaging is used to record the particle dispersal and flame propagation in both configurations. In the small-scale laboratory tests, the measured flame speed is found to be about 2.0 ± 0.2 m/s in fuel-rich aluminium clouds. The burning velocity, calculated by dividing the measured flame speed by the expansion factor deduced from thermodynamic equilibrium calculations, correlates well with the previously measured burning velocity of about 22–24 cm/s from Bunsen dust flames. Flame speeds observed in field experiments with large-scale clouds, however, are found to be much higher, in the range of 12 ± 2 m/s. Estimations are presented that show that the presumably greater role of radiative heat transfer in larger-scale aluminium flames is insufficient to explain the six-fold increase in flame speed. The role of residual large-eddy turbulence, as well as the frozen-turbulence effect leading to large-scale dust concentration fluctuations that cause flame folding, are discussed as two possible sources for the greater flame speed.  相似文献   

9.
This paper presents the explosion parameters of corn dust/air mixtures in confined chamber. The measurements were conducted in a setup which comprises a 5 L explosion chamber, a dust dispersion sub-system, and a transient pressure measurement sub-system. The influences of the ignition delay on the pressure and the rate of pressure rise for the dust/air explosion have been discussed based on the experimental data. It is found that at the lower concentrations, the explosion pressure and the rate of pressure rise of corn dust/air mixtures decrease as the ignition delay increases from 60 ms; But at the higher concentrations, the explosion pressure and the rate of pressure rise increase slightly as the ignition delay increases from 60 ms to 80 ms, and decrease beyond 80 ms. The maximum explosion pressure of corn dust/air mixtures reaches its highest value equal to 0.79 MPa at the concentration of 1000 gm−3.  相似文献   

10.
Tests were conducted by the Center for Agricultural Air Quality Engineering and Science (CAAQES) and by Safety Consulting Engineers Inc. (SCE) to determine if dust found in cotton gins (gin dust) would serve as fuel for dust explosions. In other words, is gin dust explosible? The laboratory tests used by CAAQES and SCE are very different. SCE used a totally enclosed 20 liter (L) chamber, flame from a 10,000 J (10 kJ) ignition source, reported that gin dust was a class ‘A’ explosible dust. CAAQES used a 28.3-L (1 ft3) chamber with diaphragm, a stationary coil as the igniter, video and pressure recordings of each test and concluded that gin dust was not explosible. SCE followed the protocols specified by ASTM E1226 and E1515. The only indicator used to determine whether a deflagration occurred during a test was pressure. If the pressure rise exceeded one bar gage (g) in a 20-L chamber test with a flame from a 10 kJ energy source as the igniter, it was assumed that a deflagration occurred in the chamber and the dust was classified as explosible (ASTM E1226-05, 2005). The CAAQES criterion for determining if a dust was explosible consisted of determining the minimum explosive concentration (MEC). If the MEC existed using the CAAQES test system, it was explosible! The criteria used with the CAAQES method for determining the MEC was to test concentrations starting at concentrations above the MEC and lowering the concentrations until at least one of the three tests at that concentration failed to result in a deflagration. The indicators of a deflagration were (1) bursting of a diaphragm, (2) flame front leaving the chamber and (3) characteristic pressure vs. time curve.It was concluded that the ASTM method of using only pressure as the indicator of a deflagration in a totally enclosed chamber would likely result of an “over-driven” test and an incorrect finding that gin dust was explosible. The result of CAAQES testing was that gin dust was not explosible.  相似文献   

11.
Experiment-based investigations of magnesium dust explosion characteristics   总被引:1,自引:0,他引:1  
An experimental investigation was carried out on magnesium dust explosions. Tests of explosion severity, flammability limit and solid inerting were conducted thanks to the Siwek 20 L vessel and influences of dust concentration, particle size, ignition energy, initial pressure and added inertant were taken into account. That magnesium dust is more of an explosion hazard than coal dust is confirmed and quantified by contrastive investigation. The Chinese procedure GB/T 16425 is overly conservative for LEL determination while EN 14034-3 yields realistic LEL data. It is also suggested that 2000-5000 J is the most appropriate ignition energy to use in the LEL determination of magnesium dusts, using the 20 L vessel. It is essential to point out that the overdriving phenomenon usually occurs for carbonaceous and less volatile metal materials is not notable for magnesium dusts. Trends of faster burning velocity and more efficient and adiabatic flame propagation are associated with fuel-rich dust clouds, smaller particles and hyperbaric conditions. Moreover, Inerting effectiveness of CaCO3 appears to be higher than KCl values on thermodynamics, whereas KCl represents higher effectiveness upon kinetics. Finer inertant shows better inerting effectiveness.  相似文献   

12.
Many industrial processes are run at non-atmospheric conditions (elevated temperatures and pressures, other oxidizers than air). To judge whether and if yes to what extent explosive gas(vapor)/air mixtures will occur or may be generated during malfunction it is necessary to know the safety characteristic data at the respective conditions. Safety characteristic data like explosion limits, are depending on pressure, temperature and the oxidizer. Most of the determination methods are standardized for ambient conditions. In order to obtain determination methods for non-atmospheric conditions, particularly for higher initial pressures, reliable ignition criteria were investigated. Ignition tests at the explosion limits were carried out for mixtures of methane, propane, n-butane, n-hexane, hydrogen, ammonia and acetone in air at initial pressures up to 20 bar. The tests have been evaluated according to different ignition criteria: visual flame propagation, temperature and pressure rising. It could be shown that flame propagation and occasionally self-sustained combustion for several seconds occurred together with remarkable temperature rise, although the pressure rise was below 3%. The results showed that the combination of a pressure rise criterion of 2% and a temperature rise criterion of 100 K seems to be a suitable ignition criterion for the determination of explosion limits and limiting oxidizer concentration at higher initial pressures and elevated temperatures. The tests were carried out within the framework of a R&D project founded by the German Ministry of Economics and Technology.  相似文献   

13.
In order to better assess the hazards of explosion accidents, propane-air mixture deflagrations were conducted in a large-scale straight rectangular chamber (with a cross-section of 1.5 m × 1.5 m, length of 10 m, and total volume of 22.5 m3). The effect of initial volume, ignition position, and initial restraints on the explosion characteristics of the propane-air mixtures was investigated. The explosion overpressure, flame propagation, and flame speed were obtained and the computational fluid dynamics (CFD) software was used to simulate the flame-propagation process and field flow for auxiliary analysis. The hazards of large-scale propagation explosion under weak and strong constraints were evaluated and the different phases of flame propagation under weak and strong constraints were discriminated. Results indicate that the hazards caused by propane deflagration under weak constraint are mainly caused by flame spread. And the maximum overpressure under strong constraint appeared at the front part of the chamber under the large-scale condition, which is consistent with the previous small-scale test. Moreover, the simulations of flame structures under weak and strong constraint are in good agreement with experimental results, which furthers the understanding of large-scale propane deflagration under different initial conditions in large-scale spaces and provides basic data for three-dimensional CFD model improvement.  相似文献   

14.
When aluminum magnesium alloy dust floats in the air, a certain ignition energy can easily cause an accidental explosion. To prevent and control the occurrence of accidental explosions and reduce the severity of accidents, it is necessary to carry out research on the explosion suppression of aluminum magnesium alloy dust. This paper uses a vertical glass tube experimental device and a 20 L spherical explosive experimental device to carry out experimental studies on the suppression of the flame propagation and explosion overpressure of aluminum magnesium alloy dust with melamine polyphosphate (MPP) and Al(OH)3. With increasing MPP and Al(OH)3 concentrations, the flame brightness darkened, the flame velocity and propagation distance gradually decreased, and Pmax and (dp/dt)max decreased significantly. When the amount of MPP added reached 60%, the flame propagation distance decreased to 188 mm, which is a decrease of 68%, and the explosion overpressure decreased to 0.014 MPa, effectively suppressing the explosion of aluminum magnesium alloy dust. The experimental results showed that MPP was more effective than Al(OH)3 in inhibiting the flame propagation and explosion overpressure of the aluminum magnesium alloy dust. Finally, the inhibitory mechanisms of the MPP and Al(OH)3 were further investigated. The MPP and Al(OH)3 endothermic decomposition produced an inert gas, diluted the oxygen concentration and trapped active radicals to terminate the combustion chain reaction.  相似文献   

15.
为探究超细粉体惰化剂对铝合金抛光伴生粉尘爆炸特性的影响规律,利用标准化实验装置及自行搭建的实验平台,在对爆炸基本参数进行测试的基础上,分别研究超细CaCO3粉体对抛光废弃物粉尘点燃敏感度的钝化作用以及对爆炸火焰传播进程的惰化效果,并在相同条件下与同等粒径高纯度铝粉的实验效果进行比对。研究结果表明:铝合金抛光废弃物粉尘最小点火能量为280 mJ,而同等粒径高纯度铝粉最小点火能量为35 mJ;在铝合金抛光废弃物粉尘质量浓度为300 g/m3条件下,发生爆炸的火焰传播速度峰值为7.4 m/s,约为高纯度铝粉的57%,铝合金抛光废弃物粉尘的爆炸敏感度及猛烈度均低于高纯度铝粉;当超细CaCO3粉体的惰化比为30%时,可将铝合金抛光废弃物粉尘的最小点火能量钝化至约1 J,爆炸火焰失去持续传播能力,惰化作用效果充分显现。  相似文献   

16.
According to standard procedures, flammability and explosion parameters for dusts and dust mixtures are evaluated in 20 L and/or 1 m3 vessels, with equivalent results provided a correct ignition delay time (60 ms in the 20 L vessel; 600 ms in the 1 m3 vessel). In this work, CFD simulations of flow field and dust concentration distribution in the 1 m3 spherical vessel are performed, and the results compared to the data previously obtained for the 20 L. It has been found that in the 1 m3 vessel, the spatial distribution of the turbulent kinetic energy is lower and much more uniform. Concerning the dust distribution, as in the case of the 20 L, dust is mainly concentrated at the outer zones of the vortices generated inside the vessel. Furthermore, an incomplete feeding is attained, with most of the dust trapped in the perforated annular nozzle. Starting from the maps of dust concentration and turbulent kinetic energy, the deflagration index KSt is calculated in both vessels. In the conditions of the present work, the KSt is found to be 2.4 times higher in the 20 L than in the 1 m3 vessel.  相似文献   

17.
In this work, the effect of spatial distribution and values of the turbulent kinetic energy on the pressure-time history and then on the explosion parameters (deflagration index and maximum pressure) was quantified in both the standard vessels (20 L and 1 m3).The turbulent kinetic energy maps were computed in both 20 L and 1 m3 vessels by means of CFD simulations with validated models. Starting from these maps, the turbulent flame propagation of cornstarch was calculated, by means of the software CHEMKIN. Then, the pressure-time history was evaluated and from this, the explosion parameters.Calculations were performed for three cases: not uniform turbulence level as computed from CFD simulations, uniform turbulence level and equal to the maximum value, uniform profile and equal to the minimum value. It was found that the cornstarch in the 20 L vessel get variable classes (St-1, St-2, St-3) with respect to the 1 m3 (St-1). However, simulations performed on increasing the ignition delay time, shown that the same results can be attained only using 260 ms as ignition delay time in the 20 L vessel.  相似文献   

18.
A study of vented explosions in a length over diameter (L/D) of 2 in cylindrical vessel connecting with a vent duct (L/D = 7) is reported. The influence of vent burst pressure and ignition locations on the maximum overpressure and flame speeds at constant vent coefficient, K of 16.4 were investigated to elucidate how these parameters affect the severity of a vented explosion. Propane and methane/air mixtures were studied with equivalence ratio, Φ ranges from 0.8 to 1.6. It is demonstrated that end ignition exhibited higher maximum overpressures and flame speeds in comparison to central ignition, contrary to what is reported in literature. There was a large acceleration of the flame toward the duct due to the development of cellular flames and end ignition demonstrated to have higher flame speeds prior to entry into the vent due to the larger flame distance. The higher vent flow velocities and subsequent flame speeds were responsible for the higher overpressures obtained. Rich mixtures for propane/air mixtures at Φ = 1.35 had the greatest flame acceleration and the highest overpressures. In addition, the results showed that Bartknecht's gas explosion venting correlation is grossly overestimated the overpressure for K = 16.4 and thus, misleading the impact of the vent burst pressure.  相似文献   

19.
Experiments using an open space dust explosion apparatus and a standard 20 L explosion apparatus on nano and micron polymethyl methacrylate dust explosions were conducted to reveal the differences in flame and pressure evolutions. Then the effect of combustion and flame propagation regimes on the explosion overpressure characteristics was discussed. The results showed that the flame propagation behavior, flame temperature distribution and ion current distribution all demonstrated the different flame structures for nano and micron dust explosions. The combustion and flame propagation of 100 nm and 30 μm PMMA dust clouds were mainly controlled by the heat transfer efficiency between the particles and external heat sources. Compared with the cluster diffusion dominant combustion of 30 μm dust flame, the premixed-gas dominant combustion of 100 nm dust flame determined a quicker pyrolysis and combustion reaction rate, a faster flame propagation velocity, a stronger combustion reaction intensity, a quicker heat release rate and a higher amount of released reaction heat, which resulted in an earlier pressure rise, a larger maximum overpressure and a higher explosion hazard class. The complex combustion and propagation regime of agglomerated particles strongly influenced the nano flame propagation and explosion pressure evolution characteristics, and limited the maximum overpressure.  相似文献   

20.
The aim of this work is to determine the influence of operating parameters such as the dispersion pressure, the ignition delay and height on the dust flammability. A Computational Fluid Dynamics (CFD) simulation, based on an Euler–Lagrange approach, was developed with Ansys Fluent™ and validated experimentally. Such analysis will facilitate the choice of the most conservative conditions for a flammability test. This paper is focused on a case study performed on wheat starch with the modified Hartmann tube. The dispersion process of the powder was studied with granulometric analyses performed in situ and high speed videos. Tests were performed with injections at gas pressure ranging from 3 to 6 bars and the evolution of the particle size distribution (PSD) was recorded at different ignition heights (5, 10 and 15 cm over the dispersion nozzle). The observations highlighted the presence of agglomeration/deagglomeration processes and dust segregation. Besides, a CFD simulation analysis was aimed at evaluating the impact of a set of parameters on the PSD and the local turbulence, which are closely linked to some flammability parameters. For this computational analysis, the CFD simulation was coupled with a collision treatment based on a Discrete Element Method (DEM) in order to consider the cohesive behavior of the combustible dust. Thus the results suggest performing the injection of the gases at approximately 5 bars for the flammability tests of wheat starch in order to obtain the finest PSD at a given ignition height. It is also shown that the finest PSD are obtained at 5 cm over the dispersion nozzle. However, the local instabilities and turbulence levels are so high during the first stages of the dispersion that the flame growth can be disturbed for short ignition delays. Moreover, the stabilization of the bulk of the dust cloud requires longer periods of time when the ignition sources are located at 15 cm. As a result, the recommended height to perform a flammability test is 10 cm in this case. Finally, this study proposes some tools that might improve the procedure of dust flammability testing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号