首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several different data correlations have been developed for the external pressures associated with vented gas explosions and dust explosions. These correlations, which are applicable to external locations in the direct line-of-sight of the enclosure vent, are reviewed here. In addition, the application of spherically symmetric and of ellipsoidal blast wave models is explored as a possible means of calculating external pressures over a wider range of conditions than is possible with the existing data correlations. Results indicate that the spherically symmetric blast wave model can obtain a comparable accuracy (8–9 kPa standard deviation) for line-of-sight locations as the more recent data correlations. In the case of the lower blast pressures at locations perpendicular to the vent line-of-sight, the ellipsoidal blast wave provides significantly better agreement with data (to within 1 kPa standard deviation for the one set of available test data) than the spherically symmetric model.  相似文献   

2.
利用球型容器与管道组合,开展连通容器气体爆炸与泄爆实验,分析连通条件下,火焰在管道中的传播过程及其对起爆容器和传爆容器的压力影响。实验结果表明:连通容器气体爆炸中,火焰从起爆容器到传爆容器传播经历了一段不断加速,但加速度不断减小的过程;泄爆过程中,火焰传播过程与密闭爆炸时基本一致。管道中火焰加速传播,使得传爆容器的爆炸压力和强度相较于作为起爆容器时均明显增加,危险更大,采用与起爆容器相同的泄爆面积,无法满足对连通容器中传爆容器的泄爆。同时,泄爆是一个快速的能量泄放过程应选择合理的泄爆方式,防止二次危害。  相似文献   

3.
To effectively prevent and mitigate explosion hazards and casualties, relief venting of flammable gas explosions has been applied in production processes in a broad variety of industries. This work conducted fully vented experiments to investigate the influence of venting membrane thickness, and partially vented experiments to investigate the influence of baffle blocking rate on the explosion characteristics of 9.5 vol% methane-air mixtures in linked vessels with a 0.5 m long vented duct. Results indicate that the membrane thickness and blocking rate for the two types of vented explosions significantly affected the explosion overpressure. The smaller the membrane thickness and blocking rate, the lower the explosion overpressure. Secondary explosions were observed in the vented duct through experiments and a weaker explosion flame appeared at a small blocking rate of 20%. With the further increase in the blocking rate, the flame became extremely weak, and no secondary explosions occurred. The overpressure evolution process at different positions in the explosion duct and secondary explosion phenomenon in the vented duct were investigated. This work could probably serve as an important reference for the selection of technical parameters of explosion venting in the practical industrial processes.  相似文献   

4.
Scaling parameters for vented gas and dust explosions   总被引:3,自引:0,他引:3  
Results of experiments or calculations for vented explosions are usually presented by expressing a term containing the peak (reduced) pressure as a function of a vent parameter. In gas explosions, the reactivity of the system has been typically characterized through an effective burning velocity, uf. In the case of dust explosions, a normalized peak rate of pressure rise, K(=V1/3(dp/dt)max), has been used instead. Depending on the chosen approach, comparisons between systems with the same “reactivity” take different meanings. In fact, correlation formulas resulting from these two approaches imply different scaling between important system parameters. In the case of a constant-uf system, and for sufficiently large vent areas, the reduced pressure, Δpr, is approximately proportional to the square of the peak unvented pressure, Δpm. On the other hand, correlations developed for constant-K systems imply proportionality of Δpr with Δpm raised to a power between −5/3 and −1, with the exact value depending on the assumptions made on the shape of the pressure profile. While the ultimate resolution of the details of the scaling may require recourse to experiments, this theoretical analysis offers a tool for the planning of such experiments and for the interpretation of their results. The paper provides a discussion of these scaling issues with the help of predictions from an isothermal model of vented explosions.  相似文献   

5.
One of the more obvious consequences of a dust deflagration inside process equipment or a structure is the mechanical damage caused by shock (compression) waves. This overpressure damage is revealed through the displacement of equipment, the outward deformation or rupture of enclosures constructed of ductile materials, or the projection of missiles. However, a different type of damage is sometimes observed in the ductwork connecting process equipment. In particular, the ductwork is collapsed as if it were subjected to an external, rather than an internal pressure. The phenomenon that causes this collapse of thin-walled conduit is a gas dynamic process called an expansion wave. When a dust deflagration travels through a conduit, it accelerates and causes a rise in pressure. When the dust deflagration is vented (say through a deflagration vent), the discharge of the high-pressure combustion products causes the formation of an expansion wave that travels in the reverse direction of the original discharge. The expansion wave causes the pressure in the ductwork to fall below atmospheric pressure. The sub-atmospheric pressure, in turn, causes the ductwork to fail by buckling. In this study, we examine the gas dynamics of the expansion wave, demonstrate how to calculate the degree of pressure drop caused by the expansion wave, and illustrate the concept with case studies of dust explosions.  相似文献   

6.
The present paper deals with a study of the effect of ducting on explosions in vented enclosures. The presence of a duct was shown to increase the pressure reached in vented vessels. At the moment it is still not clear what are the main phenomena occurring in ducted-venting systems and no reliable correlations are available for the sizing of ducted vented systems. The only correlation available for gas explosions was developed by Bartknecht (1993) and assumed as a guideline in NFPA 68 (2002) while for dust explosions more correlations are available as reported in VDI 3673 (2002), in NFPA 68 (2002) and in Tamanini and Fisher (2003).This paper presents a critical review of available experimental and theoretical results on gas explosions in vessels vented through a duct that was carried out mainly to understand the role of the phenomena involved. Furthermore, the available correlations for ducted-venting of gaseous explosions of NFPA 68 (2002) and for dust explosions (Tamanini and Fisher, 2003; VDI 3673,2002; NFPA 68,2002) were applied to the experimental results available in the literature, to test their validity and applicability.  相似文献   

7.
Dust Explosion Simulation Code (DESC) was a project supported by the European Commission under the Fifth Framework Programme. The main purpose of the project was to develop a simulation tool based on computational fluid dynamics (CFD) that could predict the potential consequences of industrial dust explosions in complex geometries. Partners in the DESC consortium performed experimental work on a wide range of topics related to dust explosions, including dust lifting by flow or shock waves, flame propagation in vertical pipes, dispersion-induced turbulence and flame propagation in closed vessels, dust explosions in closed and vented interconnected vessel systems, and measurements in real process plants. The new CFD code DESC is based on the existing CFD code FLame ACceleration Simulator (FLACS) for gas explosions. The modelling approach adopted in the first version entails the extraction of combustion parameters from pressure–time histories measured in standardized 20-l explosion vessels. The present paper summarizes the main experimental results obtained during the DESC project, with a view to their relevance regarding dust explosion modelling, and describes the modelling of flow and combustion in the first version of the DESC code. Capabilities and limitations of the code are discussed, both in light of its ability to reproduce experimental results, and as a practical tool in the field of dust explosion safety.  相似文献   

8.
Empirical correlations are often used to estimate safety distances in the event of dust explosions. In Europe, there are two main correlations available in VDI 3673 and EN 14491. Whereas the VDI 3673 correlation is based on experimental investigations of vented dust explosions using large vessels, and assumes an external explosion, the EN 14491 correlation is derived from SKJELTORP et al. internal explosion tests in ammunition storage facility. This paper provides an overview of the experimental studies of vented gas and dust explosion. It aims to highlight the main findings of such studies, while defining the conditions for a secondary explosion to occur and comparing experimental data with the application of standards, in order to propose elements to choose the more appropriate correlation.  相似文献   

9.
A study on the obstacle-induced variation of the gas explosion characteristics   总被引:13,自引:0,他引:13  
A study on the variation of the gas explosion characteristics caused by the built-in obstacles was conducted in enclosed/vented gas explosion vessels. It has been well known that the obstacles in pipes and long ducts would accelerate the flame propagation, and cause the transition from deflagration to detonation. In this study, the explosion characteristics and the flame behavior of vented explosions and constant-volume explosions were investigated. Experiments were carried out in a 270-liter and 36-liter hexahedron vessels filled with LPG–air mixture. The explosion characteristics of the gas mixture were determined by using a strain-responding pressure transducer. The flame behavior was recorded by using a high-speed video camera. The shape and the size of the obstacle, and the gas concentration, were adjusted in the experiments.

It can be seen from the experimental results that, instead of being accelerated, the flame propagation inside the explosion vessel is decelerated by the plate obstacles fixed at the bottom of the vessel. Also, the characteristics of the enclosed explosion are not so affected by the built-in obstacles as those of the vented explosion are. It is believed that the eddy-induced turbulence behind the obstacle decelerates the flame propagation.  相似文献   


10.
The overpressure peaks and flame propagation characteristics of hydrocarbon fuel-air mixtures vented deflagration in a 20-L cylindrical vessel with a slight static activation overpressure (PST = 2.5 kPa) and five vent opening ratio were studied by a series of experiments. The experiments focused on the effect of vent opening ratio on the overpressure peaks and flame propagation characteristics of hydrocarbon fuel-air mixture vented deflagration. The internal overpressure-time profiles and high-speed photographs of flame propagation processes were obtained. The results showed that three overpressure peaks were distinguished in the internal overpressure-time profiles, caused by the burst vent cover (pburst), the acceleration of burnt gas (pfv), and the fierce external deflagration of vented unburned fuel (pext), respectively. The changing of the vent opening ratio had almost no effect on the value of pburst and (dpburst/dt). With increasing vent opening ratio, the values of pfv, pext, (dpfv/dt) and (dpext/dt) showed a decreasing trend while the values of pburst and (dpburst/dt) were nearly constant. The flame presented a hemispherical shape before the vent cover ruptured then developed as a mushroom shape after accelerated to external field. There were three flame speed peaks during flame propagation process, resulted from venting flow acceleration, external deflagration, and axial heat flux formed by internal combustion. With the increase of vent opening ratio, all of the maximum flame speed, external average flame speed, maximum flame distance and external flame duration showed a downward trend, excepting for the internal average flame speed almost remained constant.  相似文献   

11.
The SCOPE 3 model (Shell Code for Overpressure Prediction in gas Explosions) has been developed to predict the overpressures which could be generated by gas explosions in vented enclosures, such as offshore modules. SCOPE 3 attempts, wherever possible, to model the underlying physical processes in an explosion. This phenomenological approach gives greater confidence in predictions for full-scale events than methods based simply on correlations of experimental data.  相似文献   

12.
This paper presents a model and simulation results for the mitigation of a hydrogen–air deflagration by venting through a duct. A large eddy simulation (LES) model, applied previously to study both closed-vessel, and open atmosphere hydrogen–air deflagrations, was developed further to model a hydrogen–air explosion vented through a duct. Sub-grid scale (SGS) flame wrinkling factors were introduced to model major phenomena which contribute to the increase of flame surface area in vented deflagrations. Simulations were conducted to validate the model against 20% hydrogen–air mixture deflagrations (vent diameters 25 and 45 cm) and 10% hydrogen–air mixture deflagration (vent diameter 25 cm). There was reasonable correlation between the simulations and the experimental data. The comparative importance of different physical phenomena contributing to the flame wrinkling is discussed.  相似文献   

13.
A three-dimensional gasdynamic model with constant burning rate is applied for the prediction of the maximum pressure rise from gaseous combustion in vented enclosures. A series of calculations for an enclosure with aspect ratio close to unity are presented. Both cases with and without obstacles in the enclosure are considered. Results of calculations are compared with a simple 0D solution for spherical vessels. It is shown that, in cases without obstacles, the 0D solution for the maximum reduced overpressures is close to the predictions of the detailed modeling. In cases with obstacles, the detailed simulation gives significantly higher overpressures than those from the 0D model. However, in all the cases the reduced pressures are correlated well with the maximum flame surface area.  相似文献   

14.
A methodology to determine the laminar burning velocity from closed vessel gas explosions is explored. Unlike other methods which have been used to measure burning velocities from closed vessel explosions, this approach belongs to the category which does not involve observation of a rapidly moving flame front. Only the pressure–time curve is required as experimental input. To verify the methodology, initially quiescent methane–air mixtures were ignited in a 20-l explosion sphere and the equivalence ratio was varied from 0.67 to 1.36. The behavior of the pressure in the vessel was measured as a function of time and two integral balance models, namely, the thin-flame and the three-zone model, were fitted to determine the laminar burning velocity. Data on the laminar burning velocity as a function of equivalence ratio, pressure and temperature, measured by a variety of other methods have been collected from the literature to enable a comparison. Empirical correlations for the effect of pressure and temperature on the laminar burning velocity have been reviewed and two were selected to be used in conjunction with the thin-flame model. For the three-zone model, a set of coupled correlations has been derived to describe the effect of pressure and temperature on the laminar burning velocity and the laminar flame thickness. Our laminar burning velocities are seen to fall within the band of data from the period 1953–2003. A comparison with recent data from the period 1994–2003 shows that our results are 5–10% higher than the laminar burning velocities which are currently believed to be the correct ones for methane–air mixtures. Based on this observation it is concluded that the methodology described in this work should only be used under circumstances where more accurate methods can not be applied.  相似文献   

15.
This study investigates dust explosions in vessel-pipe systems to develop a better understanding of dust flame propagation between interconnected vessels and implications for the proper application of explosion isolation systems. Cornstarch dust explosions were conducted in a large-scale setup consisting of a vented 8-m3 vessel and an attached pipe with a diameter of 0.4 m and a length of 9.8 m. The ignition location and effective dust reactivity were varied between experiments. The experimental results are compared against previous experiments with initially quiescent propane-air mixtures, demonstrating a significantly higher reactivity of the dust explosions due to elevated initial turbulence, leading to higher peak pressures and faster flame propagation. In addition, a physics-based model developed previously to predict gas explosion dynamics in vessel-pipe systems was extended for dust combustion. The model successfully predicts the pressure transients and flame progress recorded in the experiments and captures the effects of ignition location and effective dust reactivity.  相似文献   

16.
Explosions caused by the rapid release of energy from the expansion of burnt gases, along with an associated pressure rise, in an enclosure can be mitigated by venting. Many empirical equations have been derived based on vented gas deflagration phenomena. In the present paper, four empirical equations for gas venting were reviewed, i.e., NFPA 68, the European Standard (EN 14994), Molkov et al. and Bradley and Mitcheson in order to assess their reliability and applicability for predicting the reduced explosion pressure (Pred) of propane-air, methane-air and hydrogen-air mixtures at three different chamber-scale volumes. The results showed that the NFPA 68 correlation is the most appropriate method for predicting Pred, while Bradley and Mitcheson gave values closer to those of experimental data for propane-air mixtures in medium and larger chambers, respectively. However, none of the predicted correlations was able to provide a reasonable prediction of Pred in a hydrogen-air explosion. In addition, these predicted correlations showed greater discrepancies in Pred values in the presence of vent area, ignition position and obstacles.  相似文献   

17.
Accidental gas explosions occurred at a refuse-derived-fuel (RDF) storage in Japan, and two fire fighters on duty were dead. The flammable gases, which caused the gas explosions generated during a RDF fire. It means that gas explosions could occur in the use of solid fuels under certain conditions. This study has been conducted for exploring the process to gas explosions in the RDF storage. The temperature at a part of the RDF pile in the storage was inferred to spontaneously increase, and the prediction of the temperature increase was attempted on the basis of the Frank-Kamenetskii theory. It was shown that the critical temperature of RDF for spontaneous temperature rise depends on the size of the pile. Larger the pile, lower the critical temperature. The possibility of accumulation of flammable gas in the space of the RDF storage is discussed. It is indicated that the spread rate of thermal wave is slow and a high temperature region likely established. After the RDF pile ignites, the oxygen concentration near the burning site becomes low and the flammable species components in the generated gas increases. Those species pass through surrounding low temperature region and come out into the space over the RDF pile without combustion. An explosion would occur when a fresh air comes into the storage, mixes with the flammable gas coming out from the pile to form a flammable mixture, and then the flammable mixture ignites. The most effective means to prevent accidental explosions is to avoid spontaneous ignition by cooling the heated RDF. If spontaneous ignition occurs, elimination of flammable gases from the storage should be strongly recommended.  相似文献   

18.
The present paper describes the development of a new CFD-code (DESC) for the assessment of accidental hazards arising from dust explosions in complex geometries. The approach followed entails the estimation of the laminar burning velocity of dust clouds from standardized laboratory-scale tests, and its subsequent use as input to the combustion model incorporated in DESC. The methodology used to obtain the laminar burning velocities is demonstrated by igniting turbulent propane-air mixtures to deflagration in a standard 20-litre USBM-vessel, and extracting the laminar burning velocity from the pressure–time curves; the results are compared with literature data. Laminar burning velocities for clouds of maize starch dust in air were estimated following the same procedure, and the resulting empirical model was used to simulate dust explosions in a 236-m3 silo.  相似文献   

19.
Reaction kinetics is fundamental for modelling the thermal oxidation of a solid phase, in processes such as dust explosions, combustion or gasification. The methodology followed in this study consists in i) the experimental identification of the reaction mechanisms involved in the explosion of organic powders, ii) the proposal of simplified mechanisms of pyrolysis and oxidation, iii) the implementation of the model to assess the explosion severity of organic dusts. Flash pyrolysis and combustion experiments were carried out on starch (22 μm) and cellulose (53 μm) at temperatures ranging from 973 K to 1173 K. The gases generated were collected and analyzed by gas chromatography. In this paper, a semi-global pyrolysis model was developed for reactive systems with low Damköhler number. It is in good agreement with the experimental data and shows that both carbon monoxide and hydrogen are mainly generated during the pyrolysis of the solid, the generation of the latter compound being greatly promoted at high temperature. A simplified combustion model was also proposed by adding two oxidation reactions of the pyrolysis products. In parallel, flame propagation tests were performed in a semi open tube in order to assess the burning velocity of such compounds. The laminar burning velocity of cellulose was determined to be 21 cm s−1. Finally, this model will be integrated to a predictive model of dust explosions and its validation will be based on experimental data obtained using the 20 L explosion sphere. The explosion severity of cellulose was determined and will be used to develop and adjust the predictive model.  相似文献   

20.
The nature of coherent deflagration phenomena in a vented enclosure-atmosphere system is analysed. The study is based on experimental observations of SOLVEX programme in the empty 547-m3 vented enclosure and consequent analysis of the same test by large eddy simulations (LES). A comparison between simulated and experimental pressure transients and dynamics of flame front propagation inside and outside the enclosure gave an insight into the nature of the complex simultaneous interactions between flow, turbulence and combustion inside the enclosure and in the atmosphere. It is revealed through LES processing of experimental data that the substantial intensification of premixed combustion occurs only outside the empty SOLVEX enclosure and this leads to steep coherent pressure rise in both internal and external deflagrations. The external explosion does not affect burning rate inside the enclosure. There is only one ad hoc parameter in the LES model, which is used to account for unresolved subgrid scale increase of flame surface density outside the enclosure. The model allows reaching an excellent match between theory and experiment for coherent deflagrations in the empty SOLVEX facility. The mechanism of combustion intensification in the atmosphere is discussed and the quantitative estimation of the model ad hoc parameter is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号