首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
通过分析含硫油品储罐自燃事故发生的主要影响因素,建立含硫油品储罐自燃事故的事故树图,在此基础上构建了自燃事故的模糊综合评判模型,采用线性分布函数的隶属函数,对腐蚀产物引起的自燃事故进行分析与评价.  相似文献   

2.
Spontaneous combustion of coarse coal stockpiles in temporary coal storage yards was investigated numerically using COMSOL Multiphysics software. The main purposes of the numerical investigation were to identify the self-ignition characteristics of coarse coal stockpiles and formulate a theoretical model to predict the self-ignition time and locations of coarse coal piles. A mathematical model for self-ignition of coarse coal piles was developed and the process of spontaneous ignition of coarse coal stockpiles was simulated. The kinetic data of low-temperature oxidation reaction was obtained from the laboratory-scale experiments with bituminous coals taken from Jindi Coal Mine of Shanxi Province in China. The influence of moisture was ignored because the studied coal had low moisture content (mass concentration: 1.87%) and both coal and ambient environment were assumed to be saturated with moisture (or ambient environment was assumed to be dry). The effects of five variables (i.e. wind velocity, oxygen concentration, height, porosity, and side slope) on the spontaneous ignition in coarse coal piles were examined. Simultaneously, a theoretical prediction model was formulated in light of variable analyses and a great number of simulations.Compared to self-ignition characteristics of fine-particle coal piles, several self-ignition characteristics of coarse coal piles were identified by numerical investigation. Wind-driven forced convection plays a predominant role in self-heating of coarse coal piles. As wind velocity increases, the self-ignition location in the pile migrates from the lower part which is close to the surface of the windward side to the upper part near to the surface of the leeward side. Wind velocity increase exerts the positive or the negative effect on self-heating, which depends on a critical wind velocity value to sustain balances of both the heat and the availability of oxygen in the coarse coal pile. The behavior of self-ignition is remarkably sensitive to both oxygen concentration and height, and a coarse coal stockpile will not ignite spontaneously as long as one of two critical variable values is satisfied: oxygen concentration of 5% or height of 3 m. The theoretical prediction model suggests when and where countermeasures should be made to prevent the self-ignition in the coal stockpile with engineering accuracy.  相似文献   

3.
基于神经网络的煤层自然发火的非线性预测   总被引:3,自引:2,他引:1  
煤炭自燃是一典型的非线性现象。笔者论述了煤炭自燃的危害 ,从非线性理论的角度分析了煤炭自燃的本质特征 ;应用神经网络中BP网络这一高度非线性关系映射建立了自然发火预测模型 ,克服了传统预测方法的不足并在山东枣庄矿业集团公司柴里煤矿进行了预测分析 ,预测结果与验证结果基本吻合 ,取得了满意的效果 ,为解决煤炭自燃的预测提供了一条良好的思路和方法 ,具有较大的理论意义和应用价值。  相似文献   

4.
多点法测定可燃物质自燃特性的可靠性研究   总被引:1,自引:0,他引:1  
多点法是一种新提出的自热反应动力学分析方法。采用实验研究和理论分析相结合的方式对多点法的操作过程以及实验结果的可靠性展开研究。通过构建一维导热系统、采用不同形式的热电偶布设方式,对烟叶粉末的自燃临界环境温度、活化能以及反应热与指前因子的乘积等参数进行了测定。研究表明:所构建的一维系统能较好地模拟一维导热;热电偶的分布方式对测量结果有较大影响,对称分布状况下,温度结果与经典的F-K对称模型一致;多点法相比于传统方法省时省力,测定结果有较好的线性拟合相关度,求解的动力学参数较为可靠。  相似文献   

5.
Experiments were performed to investigate the self-ignition behaviour of accumulations of four different technical dusts at oxygen volume fractions ranging from 1.3 to 21%. For this purpose a laboratory oven used for hot storage testing was modified to allow flushing with the pre-mixed oxygen/nitrogen mixture of the desired composition. It was found that for all sample volumes investigated the self-ignition temperatures were higher the lower was the oxygen volume fraction. In addition, the type of reaction changed obviously, since the apparent activation energy significantly decreased at oxygen volume fractions below 6%. However, it was still possible to observe exothermic effects at oxygen volume fractions as low as 1.3%. A numerical model was established to simulate the process of self-ignition including the coupled heat and mass transfer within the dust accumulation using a finite element solver. The model consists of six balance equations for the heat transfer and the transport of five chemical species. It shows that the model reflects self-ignition in dust accumulations with satisfying accuracy, as long as the input data generated by preceding experiments are reliable.  相似文献   

6.
The current paper presents experimental investigations as well as numerical simulations on the influence of water and humidity on the self-ignition of combustible bulk materials.It is well known, that bulk materials may undergo self-ignition if stored under specific conditions. In some cases, large amounts of these materials are exposed to a humid surrounding, e.g. dried coal in a moist atmosphere. Due to the effects of condensation and adsorption of water, additional heat is generated and transported into the bulk material. If the pile is stored slightly below its self-ignition temperature, the bulk material can become supercritical and an ignition occurs.Experiments were carried out for German lignite coal sampled in two different particle size fractions. They showed, that subcritical deposits turned to supercritical behaviour if the relative humidity in the surrounding was suddenly increased or water was poured on the surface of the sample. Besides the experiments, a numerical model was established to describe the effects of self-heating until ignition of the deposit, including the transportation of moisture. Simulations with this model led to satisfying results when compared to the experiments.  相似文献   

7.
Self-ignition in coal stockpiles is a serious economic, environmental and safety problem. Evaluation is an effective way to identify the self-ignition hazards in implicit environment of coal piles and provides a guide for countermeasures against spontaneous combustion in coal piles. In this paper, a comprehensive evaluation system is proposed. The trapezoidal and the triangular extent fuzzy AHP methods are employed to handle the imprecision and uncertainty of the effects of factors. A coal stockpile stored at the Bulk Cargo Logistics of Tianjin Port of China and three coal piles in the Teruel basins of Spain are studied to demonstrate the validity of the index system and the effectiveness of fuzzy AHP approaches. The evaluated results indicate that the proposed evaluation system and approaches are valid and objective for evaluating self-ignition risks of coal stockpiles; compared with the trapezoidal fuzzy AHP method, the triangular extent fuzzy AHP approach is more effective to evaluate self-ignition risks of coal piles for the priorities of factors impacting self-ignition risks are highlighted by their weight comparisons' calculation using the triangular extent analysis. The comprehensive evaluation system is beneficial to manage self-ignition risks of coal piles from a holistic point of view and to establish an early warming system of self-ignition risks of coal piles.  相似文献   

8.
对影响煤炭自燃发火危险程度的主要因素进行主观判断,运用逐步聚类分析法,对开采煤层煤炭自燃发火的危险程度进行识别,为判定煤炭自燃发火危险程度提供了一种理论方法  相似文献   

9.
The aim of this study is to propose an experimental methodology to detect incipient self-ignition processes in solid fuels. This methodology is based on the gases emissions of different solid fuels, varying the degree of compaction and the grain size of the materials. To achieve this goal, a procedure for the collection and analysis of the gases emitted by samples of various fuels has been developed, analysing the temperatures at which these emissions begin. The results obtained for different materials show that it is possible to detect incipient spontaneous combustion processes using measurements of CO and CO2 emissions during heating process, and then to set alarm thresholds based on the concentrations of these gases. Those results have been compared with results from conventional thermogravimetry and differential scanning calorimetry tests and it is shown that the proposed methodology detect the self-ignition process start point in advance.  相似文献   

10.
煤炭自燃机理及防治技术分类研究   总被引:5,自引:0,他引:5  
通过分析国内外学者对煤自燃机理的不同说法,提出了煤自燃过程的3个阶段,即潜伏阶段、自热阶段和自燃阶段,指出煤体要发生自燃必须具备4个条件:具有低温氧化性并以破碎的状态存在,有氧体积分数大于12%的空气连续通过,煤炭氧化所生成热量的速度大于散热的速度,上述3个条件同时存在的时间大于煤炭最短自然发火期等等.根据对煤炭自燃机理的研究,将防治技术措施按其作用机理可分为减漏风供氧、吸热降温和既能隔氧又能降温等3类.对防治煤炭自燃以及选择有效而可靠的技术措施具有积极的指导意义.  相似文献   

11.
为了研究低品质煤炭堆积状态下内部自热理论,采用临界自燃着火点理论和Frank-Kamenetskii 模型研究了煤堆内部热产生与热散失平衡理论以及煤堆表面的换热现象;并应用设计研发的煤堆热扩散率及温度监测实验装置和测定方法来评估低品质煤样(褐煤以及亚烟煤)临界自燃温度。结果表明:煤样堆积状态下临界自燃着火点温度可通过实验室内测定分析不同体积网框在不同环境温度条件下自热曲线得出;同体积条件下,临界自燃着火点随着煤品质的升高而增加;在140 ℃ 环境条件下,1#,2# 和3# 煤样在快速升温的前20 min内,温度变化趋势相似;在60~65 ℃,3种煤样出现温度转折点,升温速率开始减缓;根据煤样临界自燃着火点温度结合F-K热发火边界条件理论得出的堆积体积与着火点耦合关系式可预测大体积煤样自燃倾向性及临界自燃温度。  相似文献   

12.
Flammable solid bulk materials, including dusts, often undergo spontaneous combustion and the spread of reaction fronts. By addition of inert substances, the ignition and combustion behavior can be influenced. In a series of experiments different types of coal were mixed with inert powders to study the effect of the composition on the self-ignition temperature and on the formal kinetic parameters.Hot storage tests as well as simultaneous-thermal analysis were used as experimental techniques with the latter being coupled to FTIR measurements to analyze the composition of gaseous reaction products.All conducted hot storage experiments led to the conclusion that the self-ignition temperature was increased by admixing inert material if the decomposition temperature of the inert matter was higher than the self-ignition temperature of the combustible component at the sample characteristic length. If (exothermic) decomposition of the inert material occurred before a noticeable growth of reaction rate of the combustible material, even a reduction in the self-ignition temperature could be observed. In addition, significantly higher maximum reaction temperatures were observed for the mixtures than for the combustible material alone.  相似文献   

13.
Self-ignition of solid fuels storage is one of the main causes of human and economic losses. Additionally, each fire caused by this phenomenon emits an amount of toxic gases that contributes on the development of climate change. Nowadays, several methodologies are used in order to detect the self-ignition tendency of solid fuels, but they have as main disadvantages the amount of money and time that they require. The aim of this study is to propose a methodology of detection of incipient self-ignition of solid fuels through the measurement of gas emissions. This study compares existing methodologies to detect self-ignition tendency, such as TG, DSC or susceptibility, and to combustion related gas emission results. Different methods have been used to evaluate the results from the gas emission test, showing that interval and inflexion methods provide early detection of the self-heating process. With this methodology, it is possible to determine this process in advance with the equipment currently available in every industrial facility, reducing costs and improving efficiency.  相似文献   

14.
This paper is devoted to the numerical and experimental investigation of hydrogen self-ignition as a result of the formation of a primary shock wave in front of a cold expanding hydrogen gas jet. Temperature increase, as a result of this shock wave, leads to the ignition of the hydrogen–air mixture formed on the contact surface. The required condition for hydrogen self-ignition is to maintain the high temperature in the area for a time long enough for hydrogen and air to mix and inflammation to take place.

Calculations of the self-ignition of a hydrogen jet are based on a physicochemical model involving the gas-dynamic transport of a viscous gas, the kinetics of hydrogen oxidation, the multi-component diffusion, and the heat exchange. We found that the reservoir pressure range, when a shock wave formed in the air during depressurization, has sufficient intensity to produce self-ignition of the hydrogen–air mixture formed at the front of a jet of compressed hydrogen. We present an analysis of the initial conditions (the hydrogen pressure inside the vessel, the temperature of the compressed hydrogen and the surrounding air, and the diameter of the hole through which the jet was emitted), which leads to combustion.  相似文献   


15.
本项目根据烟气脱硝装置工艺特点,设计并搭建了臭氧腐蚀性测试装置和臭氧自燃点测试装置。利用搭建的测试装置开展了铁粉、碳粉自燃特性研究和吸收塔内非金属材料的腐蚀性研究。通过试验研究确定了铁粉和碳粉在臭氧环境下的自燃特性,同时利用光学显微镜对非金属材质腐蚀前后的表面形貌进行了表征,确定了臭氧对非金属材质的腐蚀特性。通过理论计算和试验研究确定了纯氧管道和含有一定浓度臭氧的氧气管道的工艺危险性。根据脱硝装置气体管道的研究成果给出了合理化建议。  相似文献   

16.
This paper describes a numerical and experimental investigation of hydrogen self-ignition occurring as a result of the formation of a shock wave. The shock wave is formed in front of high-pressure hydrogen gas propagating in a tube. The ignition of the hydrogen–air mixture occurs at the contact surface of the hydrogen and oxidant mixture and is due to the temperature increase produced as a result of the shock wave. The required condition for self-ignition is to maintain the high temperature in the mixture for a time long enough for inflammation to take place. The experimental technique employed was based on a high-pressure chamber pressurized with hydrogen, to the point of a burst disk operating to discharge pressurized hydrogen into a tube of cylindrical or rectangular cross section containing air. A physicochemical model involving gas-dynamic transport of a viscous gas, detailed kinetics of hydrogen oxidation and heat exchange in the laminar approach was used for calculations of high-pressure hydrogen self-ignition. The reservoir pressure range, when a shock wave is formed in the air that has sufficient intensity to produce self-ignition of the hydrogen–air mixture, is found. An analysis of governing physical phenomena based on the experimental and numerical results of the initial conditions (the hydrogen pressure inside the vessel, and the shape of the tube in which the hydrogen was discharged) and physical mechanisms that lead to combustion is presented.  相似文献   

17.
A mathematical model is presented which allows one to treat the combined phenomena of heat, mass and species transfer by diffusion as they occur within smouldering fires in accumulations of dust or other solid bulk materials. The model was applied to predict self-ignition temperatures of five different dusts, where it could be shown that computed and experimental self-ignition temperatures coincide within an error margin of ±5%.

For smouldering fires, if initiated by either self-ignition or an ignition source, it could be shown that the temperature and the velocity at which the reaction front propagates both depend on the volume of the dust accumulation. In addition, the propagation velocity increases when the initial temperature of the dust accumulation is increased and decreases when the initial moisture content of the dust accumulation is increased.

Comparisons of the numerical model with experiments show that the smouldering propagation is mirrored qualitatively, while the accuracy of the computations strongly depends on the accuracy of the input parameters, namely on the apparent activation energy.  相似文献   


18.
The phenomenon of self-ignition and explosion during discharge of high-pressure hydrogen was investigated. To clarify the ignition conditions of high-pressure hydrogen jets, rapid discharge of the high-pressure hydrogen was examined experimentally. A diaphragm was used to allow rapid discharge of the high-pressure hydrogen. The burst pressure was varied from 4 to 30 MPa. The downstream geometry of the diaphragm was a flange and extension pipes, with the pipe length varying from 3 to 300 mm. The diameter of the nozzle was 5 or 10 mm. When short pipes were used, the hydrogen jet did not ignite. However, the hydrogen jet showed an increasing tendency to ignite in the pipe as the length of the pipe became longer. At higher burst pressures, a diffusion jet flame was formed from the pipe. The blast wave from the fireball formed on self-ignition of the hydrogen jet resulted in an extremely rapid pressure rise.  相似文献   

19.
A numerical model is presented which consists of a set of partial differential equations for the transport of heat and mass fractions of eight chemical species to describe the onset of self-ignition and the propagation of smouldering fires in deposits of bulk materials or dust accumulations. The chemical reaction sub-model includes solid fuel decomposition and the combustion of char, carbon monoxide and hydrogen.The model has been validated against lab-scale self-ignition and smouldering propagation experiments and then applied to predictions of fire scenarios in a lignite coal silo. Predicted reaction temperatures of 550 K and propagation velocities of the smouldering front of about 6 mm/h are in good agreement with experimental values derived from lab-scale experiments.  相似文献   

20.
复杂难采高瓦斯煤层简易放顶煤开采综合防灭火技术研究   总被引:1,自引:0,他引:1  
笔者在分析淮南矿区复杂难采高瓦斯煤层简易放顶煤开采工作面自然发火时空特点基础上 ,提出建立一套预测、预报、预防和充分准备灭火的防灭火体系 ,并阐述了预测、预报、预防的实施方法。该方法应用于淮南矿区 ,成功地开采了数个简易放顶煤工作面 ,综合防灭火技术取得了较好经济和社会效益。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号