首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hybrid mixtures – mixtures of burnable dusts and burnable gases – pose special problems to industries, as their combined Lower Explosion Limit (LEL) can lie below the LEL of the single substances. Different mathematical relations have been proposed by various authors in literature to predict the Lower Explosion Limit of hybrid mixtures (LELhybrid). The aim of this work is to prove the validity or limitations of these formulas for various combinations of dusts and gases. The experiments were executed in a standard 20 L vessel apparatus used for dust explosion testing. Permanent spark with an ignition energy of 10 J was used as ignition source. The results obtained so far show that, there are some combinations of dust and gas where the proposed mathematical formulas to predict the lower explosible limits of hybrid mixtures are not safe enough.  相似文献   

2.
Most industrial powder processes handle mixtures of various flammable powders. Consequently, hazard evaluation leads to a reduction of the disaster damage that arises from dust explosions. Determining the minimum ignition energy (MIE) of flammable mixtures is critical for identifying possibility of accidental hazard in industry. The aim of this work is to measure the critical ignition energy of different kinds of pure dusts with various particle sizes as well as mixtures thereof.The results show that even the addition of a modest amount of a highly flammable powder to a less combustible powder has a significant impact on the MIE. The MIE varies considerably when the fraction of the highly flammable powder exceeds 20%. For dust mixtures consisting of combustible dusts, the relationship between the ignition energy of the mixture and the minimum ignition energy of the components follows the so-called harmonic model based upon the volume fraction of the pure dusts in the mixture. This correlation provides results which show satisfactory agreement with the experimental values.  相似文献   

3.
Although the minimum ignition temperature is an important safety characteristic and of practical relevance in industrial processes, actually only standard operation procedures are available for pure substances and single-phase values. Nevertheless, combinations of substances or mixtures are used in industrial processes and up to now it is not possible to provide a standardised minimum ignition temperature and in consequence to design a process safely with regard to the substances used.In order to get minimum ignition temperatures for frequently used hybrid mixtures, first, the minimum ignition temperatures and ignition frequencies were determined in the modified Godbert-Greenwald furnace for two single phase solids and a liquid substance. Second, minimum ignition temperatures and ignition frequencies were determined for several combinations as hybrid mixture of dust and liquid.In parallel to the determination of ignition temperatures a new camera and computer system to differentiate ignition from non-ignition is developed. First results are promising that such a system could be much less operator depended.By a high number of repetitions to classify regions of ignition the base is laid to decide about a new procedure for a hybrid standard and updating existing ones, too. This is one of the necessary aims to be reached in the Nex-Hys project.A noticeable decrease of minimum ignition temperatures below the MIT of the pure solids was observed for the one hybrid mixture tested, yet. Furthermore more widely dispersed area of ignition is shown. In accordance to previously findings, the results demonstrate a strong relationship between likelihood of explosion and amount of added solvent. In consequence the hybrid mixture is characterized by a lower minimum ignition temperature than the single dust.  相似文献   

4.
The Pittsburgh Research Laboratory of the National Institute for Occupational Safety and Health (NIOSH) conducted a study of the explosibility of various metals and other elemental dusts, with a focus on the experimental explosion temperatures. The data are useful for understanding the basics of dust cloud combustion, as well as for evaluating explosion hazards in the minerals and metals processing industries. The dusts studied included boron, carbon, magnesium, aluminum, silicon, sulfur, titanium, chromium, iron, nickel, copper, zinc, niobium, molybdenum, tin, hafnium, tantalum, tungsten, and lead. The dusts were chosen to cover a wide range of physical properties—from the more volatile materials such as magnesium, aluminum, sulfur, and zinc to the highly “refractory” elements such as carbon, niobium, molybdenum, tantalum, and tungsten. These flammability studies were conducted in a 20-L chamber, using strong pyrotechnic ignitors. A unique multiwavelength infrared pyrometer was used to measure the temperatures. For the elemental dusts studied, all ignited and burned as air-dispersed dust clouds except for nickel, copper, molybdenum, and lead. The measured maximum explosion temperatures ranged from 1550 K for tin and tungsten powders to 2800 K for aluminum, magnesium, and titanium powders. The measured temperatures are compared to the calculated, adiabatic flame temperatures.  相似文献   

5.
粉尘云最小点火温度测试实验系统设计   总被引:2,自引:0,他引:2  
通过对Godbert -Greenwald恒温炉分析与改造 ,设计了粉尘云最小点火温度实验装置 ,并建立了相应的测试系统。调试结果表明 ,该实验系统扬尘均匀性、温控精度及结果可重复性能良好  相似文献   

6.
This paper presents the explosion parameters of corn dust/air mixtures in confined chamber. The measurements were conducted in a setup which comprises a 5 L explosion chamber, a dust dispersion sub-system, and a transient pressure measurement sub-system. The influences of the ignition delay on the pressure and the rate of pressure rise for the dust/air explosion have been discussed based on the experimental data. It is found that at the lower concentrations, the explosion pressure and the rate of pressure rise of corn dust/air mixtures decrease as the ignition delay increases from 60 ms; But at the higher concentrations, the explosion pressure and the rate of pressure rise increase slightly as the ignition delay increases from 60 ms to 80 ms, and decrease beyond 80 ms. The maximum explosion pressure of corn dust/air mixtures reaches its highest value equal to 0.79 MPa at the concentration of 1000 gm−3.  相似文献   

7.
To forestall, control, and mitigate the detrimental effects of aluminium dust, a 20-L near-spherical dust explosion experimental system and an HY16429 type dust-cloud ignition temperature test device were employed to explore the explosion characteristics of micron-sized aluminium powder under different ignition energies, dust particle sizes, and dust cloud concentration (Cdust) values; the minimum ignition temperature (MIT) values of aluminium powder under different dust particle sizes and Cdust were also examined. Flame images at different times were photographed by a high-speed camera. Results revealed that under similar dust-cloud concentrations and with dust particle size increasing from 42.89 to 141.70 μm, the MIT of aluminium powder increased. Under various Cdust values, the MIT of aluminium dust clouds attained peak value when concentrations enhanced. Furthermore, the increase of ignition energy contributed to the increase of the explosion pressure (Pex) and the rate of explosion pressure rise [(dP/dt)ex]. When dust particle size was augmented gradually, the Pex and (dP/dt)ex attenuated. Decreasing particle size lowered both the most violent explosion concentration and explosive limits.  相似文献   

8.
The critical temperature as well as the critical flux for ignition of a dust layer of cornflour and a mixture of wheatflour and cornflour (80% wheatflour+20% cornflour) on a hot plate have been determined. The moulded sample was cylindrical in shape and of different heights and diameters. The particle size of dusts ranged between 63 μm to 150 μm. The temperature–time histories for self-heating without ignition and with ignition are offered, showing the critical boundaries between them. Also the times to ignition for each dust, showing the effect of sample size on their values, are determined. Certain experimental correlations which relate to times to ignition, as well as the critical temperature for ignition and thermal and geometrical dimensions of sample are presented.  相似文献   

9.
随着现代工业的发展,粉尘爆炸事故发生的频率也逐年增加,因此,对粉尘云点火敏感程度进行测量和计算就变得十分重要。粉尘云最小点火能是粉尘爆炸重要的特性参数之一,是采取粉尘爆炸防护的基础。最小点火能在测量的过程中受到多个敏感条件的影响,其中湍流则是最复杂的影响因素之一。文中对实验过程中粉尘云的湍流进行了定义,并分析了湍流对粉尘云最小点火能影响的内在原因;同时对通过数值模拟计算粉尘云最小点火能过程中的湍流计算给出了数学模型。从实验和数学模型两个方向对湍流进行了全面描述,对粉尘云电火花点火过程中湍流影响的分析结论,可有效的指导实验。  相似文献   

10.
The effect of CaCO3 powder, a typical inert dust, on the flame spread characteristics of wood dust layers was studied using an experimental device to understand the ignition characteristics of and develop inert explosion-proof technology for deposited wood dust. The results showed that the flame spread velocity (FSV) of the mixed dust layer was affected by the dispersion effect of CaCO3 powder and physical heat absorption. As the CaCO3 powder mass fraction increased, the FSV of the dust layer first increased and then decreased, reaching a peak at a 50% mass fraction. Moreover, the front-end temperature of the flame gradually decreased, and the red spark faded. The combustion reaction of the mixed dust layer could be more completed, and the colour of the combustion residue changed from charcoal black to charcoal grey. The coupling effect of the initial temperature and wind speed can promote an increase in the FSV in the mixed dust layer. The Gauss–Amp model of the FSV of the wood dust layer and mass fraction of CaCO3 powder showed that the peak of the FSV occurred when the mass fraction of CaCO3 powder was between 40 and 50%. Thus, a good inerting and explosion-proof effect can be achieved by using CaCO3 powder with a mass fraction of more than 50%; it can improve the whole inerting process. Inert explosion-proof technology should be considered when assessing fire and explosion risk of dust in real process industry situations.  相似文献   

11.
Former methods used in the U.S. to assess hazardous and explosible coal dust date back to the 1950s. As mining technologies advanced, so too have the hazards. Given the results of the recent coal dust particle size survey and full-scale experimental mine explosion tests, the National Institute for Occupational Safety and Health (NIOSH) recommended a new minimum standard, in the absence of background methane, of 80% total incombustible content (TIC) be required in the intake airways of bituminous coal mines, replacing the previous 65% TIC requirement. Most important to monitoring and maintaining the 80% TIC is the ability to effectively collect and analyze representative dust samples that would likely disperse and participate in dust explosion propagation. Research has shown that dust suspended on elevated surfaces is usually finer, more reactive, and more readily dispersible while floor deposits of dust are generally coarser and more difficult to disperse given the same blast of air. The roof, rib, and floor portions of the dust samples were collected and analyzed for incombustible content separately and the results were compared to a band sample of the roof, rib, and floor components. Results indicate that the roof and rib dust samples should be kept separate from floor dust samples and considered individually for analyses. The various experimental collection methods are detailed along with preferred sampling approaches that improve the detectability of potentially hazardous accumulations of explosible dust.  相似文献   

12.
Lower explosion limits of hybrid fuel mixtures are usually determined through time consuming and expensive experiments. Although, mathematical expressions like Le-Chatelier's Law and Bartknecht curve have been used by many researchers to predict the LEL of hybrid mixtures, significant deviations remain unexplained. This research work, presents a more sophisticated and general approach for the determination of LEL of hybrid mixtures.Assuming that the combustion kinetics of pure species are independent and unchanged by the presence of other combustible species, complete conversion of the reactants and no heat losses, a simple mathematical model has been derived from the enthalpy balance of the whole system. For the experimental validation of the modelled values, modified version of 20L sphere has been employed, following the European standard (EN 14034-3: 2011) as experimental protocol. Hybrid mixtures of three dusts with two gases were selected for the scope of this publication. By analyzing the modelled as well as the experimental values, it can be concluded that the LEL values of the individual components in the hybrid mixture set the upper and lower limit for the LEL of the hybrid mixture provided the total amount of fuel in the system is considered as the concentration of the hybrid mixture. Moreover, the amount of dust or gas required to render the hybrid mixture flammable mainly depends on the energy contribution upon combustion of the individual species to raise the temperature of the whole system from ambient to the flame temperature.Le-Chatelier's Law and Bartknecht curve are empirical relations, which might hold true for a first-order approximation of LEL of hybrid mixtures, but do not represent the most conservative values of LEL reported in literature. This implies that there is a non-zero probability of occurrence of an explosible mixture in the non-explosible concentrations ranges defined by these relations. Considering these arguments, the authors suggest to employ the model presented in this paper – which presents reasonably conservative values of LEL of hybrid mixtures – for theoretical calculation of LEL of hybrid mixtures, when no precise experimental data is available.  相似文献   

13.
The Pittsburgh Research Laboratory (PRL) of the National Institute for Occupational Safety and Health (NIOSH) and the Mine Safety and Health Administration (MSHA) conducted joint research on dust explosions by studying post-explosion dust samples. The samples were collected after full-scale explosions at the PRL Lake Lynn Experimental Mine (LLEM), and after laboratory explosions in the PRL 20-L chamber and the Fike 1 m3 chamber. The dusts studied included both high- and low-volatile bituminous coals. Low temperature ashing for 24 h at 515 °C was used to measure the incombustible content of the dust before and after the explosions. The data showed that the post-explosion incombustible content was always as high as, or higher than the initial incombustible content. The MSHA alcohol coking test was used to determine the amount of coked dust in the post-explosion samples. The results showed that almost all coal dust that was suspended within the explosion flame produced significant amounts of coke. Measurements of floor dust concentrations after LLEM explosions were compared with the initial dust loadings to determine the transport distance of dust during an explosion. All these data will be useful in future forensic investigations of accidental dust explosions in coal mines, or elsewhere.  相似文献   

14.
Paying attention to the ignition potentiality of static electricity, the relation between the discharge characteristics and the ignition of a dust cloud and the gas produced was studied, applying an electrical power supply of which the electrical circuit is adjustable. The effect of ignition characteristics on dust and gas explosions was investigated. The results of the study indicate that the probability of an explosion is influenced by the minimum ignition energy, spark duration time, feeding rate of ignition energy, circuit capacitance, ignition voltage, etc.  相似文献   

15.
An experimental device for evaluating the minimum ignition energy (MIE) of LDPE dust/ethylene hybrid mixture was built with the innovative mixing mode. The MIE of the hybrid mixture that contained ethylene below its lower explosive limit (LEL) was studied. The result indicated that adding a small amount of ethylene significantly reduced the MIE of the original dust cloud. All the MIEs with five different particle sizes were found to show similar trends of exponential attenuation with the increase of ethylene concentration; such attenuating effect grew as the dust particle size rose. When ethylene concentration increased and approached to its LEL, the reaction mechanism dominated by combustible dust turned into one dominated by combustible gas. The MIE decreased first and then increased with the dust mass and increased with the dust particle size. A multifactor mathematical correlation model of the MIE with the dust particle size and ethylene concentration was developed.  相似文献   

16.
Dust explosions continue to pose a serious threat to the process industries handling combustible powders. According to a review carried out by the Chemical Safety Board (CSB) in 2006, 281 dust explosions were reported between 1980 and 2005 in the USA, killing 119 workers and injuring 718. Metal dusts were involved in 20% of these incidents. Metal dust deflagrations have also been regularly reported in Europe, China and Japan.The term “metal dusts” encompasses a large family of materials with diverse ignitability and explosibility properties. Compared to organic fuels, metal dusts such as aluminum or magnesium exhibit higher flame temperature (Tf), maximum explosion pressure (Pmax), deflagration index (KSt), and flame speed (Sf), making mitigation more challenging. However, technological advances have increased the efficiency of active explosion protection systems drastically, so the mitigation of metal dust deflagrations has now become possible.This paper provides an overview of metal dust deflagration suppression tests. Recent experiments performed in a 4.4 m3 vessel have shown that aluminum dust deflagrations can be effectively suppressed at a large scale. It further demonstrates that metal dust deflagrations can be managed safely if the hazard is well understood.  相似文献   

17.
Mixing of combustible dust and oxidant is one of five essential prerequisites in the dust explosion pentagon, requiring that particles originally in mutual contact within the deposits be separated and suspended in the air. However, dust dispersion never proceeds with 100% efficiency, with inevitable particle agglomeration, and an inherent trend toward settling out of suspension. Dispersibility is defined to describe the ease of dispersion of a dust and the tendency of the particulate matter to remain airborne once a dust cloud has been formed. Pioneers made contributions to classify dust dispersibility by introducing dustiness group (DG), dustability index (DI), NIOSH dispersion chamber and in-situ particle size analysis. Issues remained including the difficulty in comparing results from different methods, as well as the availability of some high-tech testing apparatus.This study aims to provide a quick and universal testing method to estimate the dispersion property of combustible dust. A new dispersibility classification was developed based on dimensionless numbers Hausner ratio and Archimedes number. Four dispersibility classes (DCs) were proposed from one to four, with a larger number meaning better dispersibility. Results for more than a dozen dust samples and mixtures thereof showed the new method is useful in dust explosion research. The consistency in classifying dust dispersion properties between the DC method and previous methods was good. Changes in DC well explained our earlier findings on suppressant enhanced explosion parameter (SEEP) phenomenon attributed to the improvement in dust dispersibility. Hausner ratio and Archimedes number, as easily measured parameters, can be quite advantageous to assess dust dispersibility, permitting a proper risk assessment for the formation of explosible dust clouds.  相似文献   

18.
Deposition of combustible dust on a hot surface is a hidden danger of fire. In this work, polymethylmethacrylate (PMMA) dust was selected to analyse the influence of dust layer diameter, dust particle size and dust layer thickness on the ignition characteristics of PMMA dust layer. Critical heating temperatures and ignition time had been measured. The STA-GC/MS-FTIR analysis was used to determine that the main products of PMMA pyrolysis were MMA, CO, CO2, and C2H4, of which CO and C2H4 were transported to the ambient to cause gas phase combustion on the surface of the dust layer. For 10 mm thick dust layer, the critical heating temperatures of 5 μm PMMA, 100 nm PMMA, and 30 μm PMMA were 300 °C, 330 °C, and 320 °C. As the thickness of the dust layer increased, the gas transport path became longer, the critical heating temperature and ignition time increased. The characteristic particle size (D [3,2]) was utilized to represent the true particle size, and the ignition time increased with the increase of the characteristic particle size. The increase in the diameter of the dust layer had a slight effect on the temperature history and ignition time of the dust layer.  相似文献   

19.
We have conducted numerical simulations of dust dispersion within the NIOSH Rock Dust Dispersion Chamber. The apparatus consists of a low-speed background ventilation flow down a long box in which is placed a tray containing a rock dust powder. A nozzle upstream of the tray introduces a short pulse of a turbulent horizontal jet flow just above the powder surface. We have utilized an incompressible Reynolds-Averaged Navier-Stokes k-ω model for the turbulent flow; particles are incorporated within a one-way Euler-Lagrangian formalism. The Rock Dust Dispersion Chamber ventilation flow exhibits a recirculation zone just above the powder-containing tray. Aerosolization proceeds via the interplay of the jet pulse flow with the background recirculation flow. The air flow is not well-mixed. The aerosolized dust is convected as a concentration cloud downstream towards the detection zone. For larger particles, gravitational settling depletes the convected cloud, so the instrument behaves as a horizontal elutriator. The instrument is robust with respect to misalignment of the jet nozzle. However, reduced streamwise drift velocity allows mixing to disperse the optically detected dust cloud concentration pulse. Our large particle simulation results compare favorably with published experimental results for large, polydisperse calcium carbonate rock dust.  相似文献   

20.
This paper describes experiences and results of experiments with several metallic dusts within the nanometer range. The nano dusts (aluminium, iron, zinc, titanium and copper) were tested in a modified experimental setup for the test apparatus 20 L-sphere (also known as 20-L Siwek Chamber), that enables the test samples to be kept under inert atmospheric conditions nearly until ignition. This setup was already introduced in earlier papers by the authors. It was designed to allow the determination of safety characteristics of nano powders under most critical circumstances (e.g. minimisation of the influence of oxidation before the test itself). Furthermore the influence of passivation on explosion behaviour is investigated and additional tests with deposited dust were carried out to describe the burning behaviour of all dusts. For a better characterisation all samples were tested with a simultaneous thermal analysis (STA). To minimise the influence of oxidation all samples were handled at inert conditions until shortly before ignition or start of the test respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号