首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigated the effects of slag composition on the hydration characteristics of slag blended cement (SBC) pastes. Synthetic slag samples were prepared by melting CaO-modified and Al(2)O(3)-modified municipal solid waste incinerator (MSWI) fly ash. MSWI fly ash was mixed with 5% CaO and 5% Al(2)O(3) (by weight), respectively, resulting in two fly ash mixtures. These mixtures were then melted at 1400 degrees C for 30 min to produce two types of slag with different contents, designated at C-slag and A-slag. Both the C-slag and A-slag samples exhibited a pozzolanic activity index higher than the unmodified slag sample. The results show that the synthetic slags all met the Taiwan EPA's current regulatory thresholds. These synthetic slags were then blended with ordinary Portland cement (OPC) at various weight ratios ranging from 10 to 40%. The 28-day strength of the C1 paste was higher than that developed by the OPC paste, suggesting that the C-slag contributed to the earlier strength of the SBC pastes. At curing times beyond 28 days, the strength of the A1 paste samples approached that of the OPC paste samples. It can be seen from this that increasing the amount of calcium and aluminum oxide increases the early strength of SBC. The C-slag blended cement paste samples showed an increase in the number of fine pores with the curing time, showing that the C-slag enhanced the pozzolanic reactions, filling the pores. Also, the incorporation of a 10% addition of C-slag also tended to enhance the degree of hydration of the SBC pastes during the early ages (3-28 days). However, at later ages, no significant difference in degree of hydration between the OPC pastes and the SBC pastes was observed with the 10% C-slag addition. However, the incorporation of A-slag did decreased the degree of hydration. A slag blend ratio of 40% significantly decreased the hydration degree.  相似文献   

2.
This paper discusses the stabilisation/solidification process with Portland cement applied to municipal solid waste incineration residues. Two types of residues were considered: fly ash (FA) produced in an electrostatic precipitator, and air pollution control (APC) residues from a semi-dry scrubber process. Cement pastes with different percentages of FA and APC residues were characterised according to their physical properties, the effect of the hydration products and their leaching behaviour. Portland pastes prepared with APC residues showed a rapid setting velocity in comparison with setting time for those pastes substituted with FA residues. Portland cement hydration was retarded in FA pastes. Leaching test results showed that heavy metals (such as Zn, Pb and Cd) and sulphates are immobilised within the paste, whereas chlorides are only partially retained. The carbonation process increases the leachability of S04(2-) and heavy metals such as Zn and Cr.  相似文献   

3.
This work aims to study the influence of thermal treatment of Cu2+ laden kaolin wastes on its immobilization efficiency in cement paste. Compressive strength and toxicity characteristic leaching procedure (TCLP) of 5–20 % kaolin waste blended cement pastes were tested. X-ray diffraction (XRD) results illustrate that adsorption of Cu2+ ions modify the crystal structure of kaolinite mineral. Fourier transform infrared (FTIR) results indicate that the adsorption sites on the kaolin surface that were occupied with free water molecules have been replaced with Cu2+ ions adsorbed from aqueous solutions. The thermal treatment of kaolin waste improves fixation ratio of Cu2+ in cement pastes containing up to 20 % of thermally treated waste. This is due to: pozzolanic activity of calcined kaolin, conversion of leachable adsorbed Cu2+ ions into encapsulated unleachable phase that does not retard the hydration of cement as well as adsorption of much of leachable Cu2+ ions on surfaces of hydration products and occlusion in its lattice structure as illustrated from XRD, FTIR, thermogravimetric, scanning electron microscopy and TCLP results. The fixation ratio of Cu2+ in cement paste blended with 20 % of thermally treated kaolin waste, reaches maximum value of about 97 % compared to 82 % for cement paste blended with 20 % of untreated kaolin waste.  相似文献   

4.
The purpose of this study was to investigate the hydration and leaching characteristics of the pastes of belite-rich cements made from electroplating sludge. The compressive strength of the pastes cured for 1, 3, 7, 28, and 90 days was determined, and the condensation of silicate anions in hydrates was examined with the 29Si nuclear magnetic resonance (NMR) technology. The leachabilities of the electroplating sludge and the hardened pastes were studied with the multiple toxicity characteristic leaching procedure (MTCLP) and the tank leaching test (NEN 7345), respectively. The results showed that the electroplating sludge continued to leach heavy metals, including nickel, copper, and zinc, and posed a serious threat to the environment. The belite-rich cement made from the electroplating sludge was abundant in hydraulic β-dicalcium silicate, and it performed well with regard to compressive-strength development when properly blended with ordinary Portland cements. The blended cement containing up to 40% the belite-rich cement can still satisfy the compressive-strength requirements of ASTM standards, and the pastes cured for 90 days had comparable compressive strength to an ordinary Portland cement paste. It was also found that the later hydration reaction of the blended cements was relatively more active, and high fractions of belite-rich cement increased the chain length of silicate hydrates. In addition, by converting the sludge into belite-rich cements, the heavy metals became stable in the hardened cement pastes. This study thus indicates a viable alternative approach to dealing with heavy metal bearing wastes, and the resulting products show good compressive strength and heavy-metal stability.  相似文献   

5.
Ordinary cement pastes with water/cement (w/c) ratios of 0.2, 0.4 and 0.5 were used to examine the chemical and physical effects of microbial influenced degradation (MID). Samples were exposed to an active culture of Thiobacillus thiooxidans or to sterile media containing sulphuric acid using an intermittent immersion technique. Acid consumption and Ca, Al and Fe releases are presented for an exposure period of 90 days. Exposed samples were also sectioned and analysed by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). All cement paste samples were subject to significant degradation in either sterile acid media or the T. thiooxidans lixiviant. Corrosion depths observed from SEM examination of exposed samples were affected by the w/c ratio of the cement. The extent and rate of degradation were not apparent from the calculated rate of hydrogen ion consumption, or the leaching rates of Ca, Al and Fe. It was not possible to distinguish differences in corrosion due to the chemical and microbial influenced degradation from the results obtained to date and further work is focusing on modified procedures to address this.  相似文献   

6.
This study presents a methodology for the characterization of construction and demolition (C&;D) waste recycled aggregates based on a combination of analytical techniques (X-ray fluorescence (XRF), soluble ions, semi-quantitative X-ray diffraction (XRD), thermogravimetric analysis (TGA-DTG) and hydrochloric acid (HCl) selective dissolution). These combined analytical techniques allow for the estimation of the amount of cement paste, its most important hydrated and carbonated phases, as well as the amount of clay and micas. Details of the methodology are presented here and the results of three representative C&;D samples taken from the São Paulo region in Brazil are discussed. Chemical compositions of mixed C&;D aggregate samples have mostly been influenced by particle size rather than the visual classification of C&;D into red or grey and geographical origin. The amount of measured soluble salts in C&;D aggregates (0.15–25.4 mm) is lower than the usual limits for mortar and concrete production. The content of porous cement paste in the C&;D aggregates is around 19.3% (w/w). However, this content is significantly lower than the 43% detected for the C&;D powders (<0.15 mm). The clay content of the powders was also high, potentially resulting from soil intermixed with the C&;D waste, as well as poorly burnt red ceramic. Since only about 50% of the measured CaO is combined with CO2, the powders have potential use as raw materials for the cement industry.  相似文献   

7.
This study investigated the properties of solidified waste using ordinary Portland cement (OPC) containing synthesized zeolite (SZ) and natural zeolite (NZ) as a binder. Natural and synthesized zeolites were used to partially replace the OPC at rates of 0%, 20%, and 40% by weight of the binder. Plating sludge was used as contaminated waste to replace the binder at rates of 40%, 50% and 60% by weight. A water to binder (w/b) ratio of 0.40 was used for all of the mixtures. The setting time and compressive strength of the solidified waste were investigated, while the leachability of the heavy metals was determined by TCLP. Additionally, XRD, XRF, and SEM were performed to investigate the fracture surface, while the pore size distribution was analyzed with MIP. The results indicated that the setting time of the binders marginally increased as the amount of SZ and NZ increased in the mix. The compressive strengths of the pastes containing 20 and 40wt.% of NZ were higher than those containing SZ. The compressive strengths at 28 days of the SZ solidified waste mixes were 1.2-31.1MPa and those of NZ solidified waste mixes were 26.0-62.4MPa as compared to 72.9MPa of the control mix at the same age. The quality of the solidified waste containing zeolites was better than that with OPC alone in terms of the effectiveness in reducing the leachability. The concentrations of heavy metals in the leachates were within the limits specified by the US EPA. SEM and MIP revealed that the replacement of Portland cement by zeolites increased the total porosity but decreased the average pore size and resulted in the better containment of heavy ions from the solidified waste.  相似文献   

8.
Ordinary Portland Cement (OPC) is often used for the solidification/stabilization (S/S) of waste containing heavy metals and salts. These waste components will precipitate in the form of insoluble compounds on to unreacted cement clinker grains preventing further hydration. In this study the long term effects of the presence of contaminants in solidified waste is examined by numerically simulating cement hydration after precipitation of metal salts on the surface of cement grains. A cement hydration model was extended in order to describe pore water composition and the effects of cement grain coating. Calculations were made and the strength development predicted by the model was found to agree qualitatively with experimental results found in literature. The complete model is useful in predicting the strength and leaching resistance of solidified products and developing solidification recipes based on cement.  相似文献   

9.
This article focuses on the effects of metallic aluminum contained in municipal solid waste incineration (MSWI) fly ashes on cement-based materials in which they are added. The ash under study was treated by an industrial physicochemical process of neutralization. The paper also presents a method to quantify the metallic aluminum content of ash: it consists in measuring the amount of hydrogen gas produced by the oxidation reaction of metallic aluminum. This method is simple and fast. Results show that studied ash contains an appreciable amount of metallic aluminum. Investigations were carried out to study the incorporation of the ash in concrete: in this case, the presence of metallic aluminum is worrying because it could be responsible for disorders in concrete. In fact, swellings are observed on cement pastes and mortars containing ash during the first 24 h of hydration. A test based on hydrostatic weighing permits to quantify the swelling of fresh cement paste and to study the evolution of this swelling. Causes of swelling are analyzed. Results show that ettringite formation occurs after the end of the expansion reaction. So it can be concluded that metallic aluminum is the sole responsible for the observed swelling. Consequences of swelling are also analyzed by measuring compressive strength of ash-containing mortars: this swelling leads to cracks in the mortars and significant decrease of their compressive strength.  相似文献   

10.
In the preceding paper detailed microstructural studies were presented of some fundamental aspects of the interactions of two organic compounds on a cement matrix. Organophilic clays are now attracting increasing attention as potential presolidification adsorbents to reduce adverse organic-cement interactions in solidification/stabilization (S/S) systems. This paper presents extensive microstructural studies of interactions between an organophilic clay, containing adsorbed organic wastes, and a cement matrix. Such interactions must be as fully understood as possible if the long-term integrity of the organophilic clay/cement mixes, in whatever formulation, is to be assured in S/S applications.A range of mixes was made up with the objective of characterizing the interaction of the organophilic clay with phenolic compounds and cement using microstructural methods. This approach was adopted in order to enable essential comparisons to be made between clay-containing and clay-free S/S mixes, using the same organics in both cases. Microstructural studies of organic-free cement/clay mixes showed that the presence of the clay caused an inhibition of the initial ettringite formation, up to seven days, but once ettringite had begun to form it increased to 140% of that in OPC paste at 28 days. Scanning electron microscopy (SEM) micrographs showed that the whole fracture surface was covered with a mat of needle shaped crystals approximately 1 μm in length. These results indicated that the incorporation of clay into the cement matrix may cause the strength reduction observed in macrostructural studies by altering the cement hydration reaction. Microstructural analysis of the solidified (post-adsorption) 3-chlorophenol showed that its detrimental effects on the cement hydration reaction were minimized, provided that the maximum adsorption capacity of the clay was not exceeded.  相似文献   

11.
A study is undertaken to determine the waste immobilization performance of low-level wastes in cement-clay mixtures. Liquid low-level wastes are precipitated using chemical methods, followed by solidification in drums. Solidification is done using cementation processes. Long-term leaching rates of the radionuclides are used as indicators of immobilization performance of solidified waste forms. In addition to evaluating the effects of kaolin clay on the leaching properties of the cemented waste forms, the effect of addition of kaolin on the strength of the cemented waste form is also investigated. The long term leaching tests show that inclusion of kaolin in cement reduces the leaching rates of the radionuclides significantly. However, clay additions in excess of 15 wt.% causes a significant decrease in the hydrolytic stability of cemented waste form. It is found that the best waste isolation, without causing a loss in the mechanical strength, is obtained when the kaolin content in cement is 5%.  相似文献   

12.
Porosity is possibly an important parameter with respect to leaching of constituents from cement monoliths. During its lifetime, the pore structure of cementitious matrices changes due to carbonation and leaching. This paper discusses the effects of both accelerated carbonation and continuous leaching on the porosity, and, conversely, how porosity affects leaching properties. Two sample types are investigated: a mortar with MSWI-bottom ash substituting the sand fraction and a cement paste with 30 wt% of the cement substituted by a flue gas cleaning residue. The samples have been intensively carbonated in a 20% CO(2) atmosphere for up to 60 days and were subsequently leached. The porosity was investigated by mercury intrusion porosimetry. Accelerated carbonation decreases total porosity by 12% in the case of 60 days of treatment of bottom ash mortars, whereas continuous leaching during 225 days increases it by 16%. Both carbonation and leaching decrease the amount of smaller capillary pores. Carbonation decreases both porosity and pH. Decreasing porosity diminishes leaching of sodium and potassium, while the decrease in pH increases leaching. However, the former process dominates the latter, resulting in a net decreasing effect of carbonation on the release of sodium and potassium from these cement matrices.  相似文献   

13.
This communication reports the laboratory scale study on the production of cement clinkers from two types of municipal solid waste incineration fly ash (MSW ash) samples. XRD technique was used to monitor the phase formation during the burning of the raw mixes. The amount of trace elements volatilized during clinkerization and hydration, as well as leaching behaviours of the clinkers obtained from optimum compositions, were also evaluated. From the results it is observed that all of the major components of ordinary Portland cement (OPC) clinkers are present in the produced clinkers. Results also show the volatilization of considerable amounts of Na, K, Pb, Zn and Cd during the production of clinkers. However, major parts of the toxic elements remaining in the clinkers appear to be immobilized in the clinkers phases. Hydration studies of the clinkers obtained from optimum compositions show that the clinkers prepared from raw MSW ash are more reactive than the washed MSW ash based clinkers. TG/DTA analyses of the hydrated pastes show the formation of hydration products, which are generally found in OPC and OPC derived cements. The initial study, therefore, shows that more than 44% of MSW ash with the addition of very small amounts of silica and iron oxide can be used to produce cement clinkers. The amount of CaCO3 necessary to produce clinkers (approximately 50%) is also smaller than the same required for the conventional process (more than 70%).  相似文献   

14.
A thermodynamic approach is used to model changes in the hydrate assemblage and the composition of the pore solution during the hydration of calcite-free and calcite-containing sulphate-resisting Portland cement CEM I 52.5 N HTS. Modelling is based on thermodynamic data for the hydration products and calculated hydration rates for the individual clinker phases, which are used as time-dependent input parameters. Model predictions compare well with the composition of the hydrate assemblage as observed by TGA and semi-quantitative XRD and with the experimentally determined compositions of the pore solutions. The calculations show that in the presence of small amounts of calcite typically associated with Portland cement, C-S-H, portlandite, ettringite and calcium monocarbonate are the main hydration products. In the absence of calcite in the cement, however, siliceous hydrogarnet instead of calcium monocarbonate is observed to precipitate. The use of a higher water-to-cement ratio for the preparation of a calcite-containing cement paste has a minor effect on the composition of the hydrate assemblage, while it significantly changes the composition of the pore solution. In particular, lower pH value and higher Ca concentrations appear that could potentially influence the solubility and uptake of heavy metals and anions by cementitious materials.  相似文献   

15.
Portland cement (CEMI) was used to solidify air pollution control (APC) residues from an energy-from-waste plant burning municipal solid waste. APC residue/CEMI mixes were prepared with CEMI additions ranging from 0 to 50 weight% (wt%) of total dry mass and water/solids ratios between 0.40 and 0.80. Isothermal conduction calorimetry was used to assess the effect of APC residues on the hydration of CEMI. Although up to 30wt% additions of APC residues accelerated CEMI hydration, the total heat of hydration during the initial 98h was significantly reduced. Higher levels of APC residues severely inhibited CEMI hydration. The consistence, setting time, compressive strength, porosity and chloride leaching characteristics of the solidified products were determined. As might be expected, increasing the CEMI addition and reducing the water content resulted in increased compressive strengths. All mixes achieved compressive strengths greater than 1MPa at 7 and 28days but only 50wt% samples did not show significant strength reduction when tested after immersion in water. Monolithic leaching tests indicated low physical immobilisation of chloride in the CEMI solidified APC residues, with chloride leaching in excess of relevant UK landfill waste acceptance criteria (WAC). The results of this study show that greater than 50% CEMI additions would be required to effectively treat APC residues to meet current WAC limits.  相似文献   

16.
17.
The distribution between hardened cement paste and cement pore water of selected concrete admixtures (BZMs), i.e., sulfonated naphthalene-formaldehyde condensate (NS), lignosulfonate (LS) and a gluconate-containing plasticiser used at the Paul Scherrer Institute for waste conditioning, was measured. Sorption data were fitted to a single-site Langmuir isotherm with affinity constants K=(19+/-4)dm(3)g(-1) for NS, K=(2.1+/-0.6) dm(3)g(-1) for LS and sorption capacities q=(81+/-16)g kg(-1) for NS, q=(43+/-8)g kg(-1) for LS. In the case of gluconate, a two-site Langmuir sorption model was necessary to fit the data satisfactorily. Sorption parameters for gluconate were K(1)=(2+/-1)x10(6)dm(3)mol(-1) and q(1)=(0.04+/-0.02)mol kg(-1) for the stronger binding site and K(2)=(2.6+/-1.1)x10(3)dm(3)mol(-1) and q(2)=(0.7+/-0.3)mol kg(-1) for the weaker binding site. Desorption of these BZMs from cement pastes and pore water in cement specimens prepared in the presence of the BZMs were then used to test the model. It was found that only minor parts of NS and LS could be mobilised as long as the cement composition was intact, whereas the sorption of gluconate was found to be reversible. The Langmuir model makes valuable predictions in the qualitative sense in that the pore water concentration of the BZMs is reduced by several orders of magnitude as compared to the initial concentrations. In view of the necessity for conservative predictions used in the safety analysis for disposal of radioactive waste, however, the predictions are unsatisfactory in that the measured pore water concentrations of NS and LS were considerably larger than the predicted values. This conclusion does not apply for gluconate, because its concentration in cement pore water was below the detection limit of approximately 50 nM.  相似文献   

18.
Heavy metal-bearing waste usually needs solidification/stabilization (s/s) prior to landfill to lower the leaching rate. Cement is the most adaptable binder currently available for the immobilisation of heavy metals. The selection of cements and operating parameters depends upon an understanding of chemistry of the system. This paper discusses interactions of heavy metals and cement phases in the solidification/stabilisation process. It provides a clarification of heavy metal effects on cement hydration. According to the decomposition rate of minerals, heavy metals accelerate the hydration of tricalcium silicate (C3S) and Portland cement, although they retard the precipitation of portlandite due to the reduction of pH resulted from hydrolyses of heavy metal ions. The chemical mechanism relevant to the accelerating effect of heavy metals is considered to be H+ attacks on cement phases and the precipitation of calcium heavy metal double hydroxides, which consumes calcium ions and then promotes the decomposition of C3S. In this work, molecular models of calcium silicate hydrate gel are presented based on the examination of 29Si solid-state magic angle spinning/nuclear magnetic resonance (MAS/NMR). This paper also reviews immobilisation mechanisms of heavy metals in hydrated cement matrices, focusing on the sorption, precipitation and chemical incorporation of cement hydration products. It is concluded that further research on the phase development during cement hydration in the presence of heavy metals and thermodynamic modelling is needed to improve effectiveness of cement-based s/s and extend this waste management technique.  相似文献   

19.
The major deficiencies in cement-based stabilization/solidification (S/S) processes are their inability to treat inorganic wastes contaminated with organic material or organic wastes. In general, organic compounds are poorly retained in a cement matrix and frequently have a detrimental, poorly understood, effect upon cement hydration and strength development. These interactions need to be understood as fully as possible, however, if S/S processes are to be developed in ways which will assure the long-term integrity of the resultant products.The work presented in this paper investigates some fundamental aspects of the interactions of two organic compounds, 3-chlorophenol and chloronaphthalene, with a cement matrix. Phenolic compounds have previously been shown to have a detrimental effect upon the macrostructural properties of ordinary Portland cement (OPC), for example, the strength, setting rate and leachability (Montgomery et al. 1988). Microstructural studies in this work have shown that 3-chlorophenol inhibits the hydration of tricalcium silicate (C3S in cement chemists' notation), with up to 90% of the C3S remaining after 28 days for highly dosed 3-chlorophenol/OPC samples. The formation of ettringite was found to be increased by the presence of 3-chlorophenol and its conversion to monosulphate inhibited. Scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) analysis of the samples showed that 3-chlorophenol crystallized in the cement matrix to form discrete crystals containing calcium and phenol. In contrast, chloronaphthalene had no observable effect on hydration reactions. In a subsequent paper, detailed studies will be presented showing how these deleterious effects can be minimized by the use of organophilic clays as a pre-solidification adsorbent.  相似文献   

20.
In recent years, Backscattered Scanning Electron microscopy techniques (BSE), coupled with an image analysis system have been recognised as a powerful tool for quantitative analysis. This paper investigates the effect of metal additions (Ba, Cu, Ni, Zn, Cr(III), Pb and Cd) to Portland cement to produce a solidified product which meets the durability criteria quantified by the ratio of hydrated products and porosity. In addition, other indicators of the progress of cement hydration such as the bulk density and evaporable water of the solidified products were also measured. Metal concentrations of 0.1 and 1% per weight of cement at a constant water/cement ratio of 0.4 were examined. The same measurements were conducted on control samples of different water/ cement ratio. The results have shown that the control samples at different W/C ratio showed consistent trend in residual cement porosity, density and evaporable water content. It also showed that low dosage of metal nitrate additions can reduce cement hydration by up to 50% and at the same time reduce the observable porosity. Overall, this work has shown that Scanning Electron Microscopy (SEM) and image analysis are powerful tools and could be used to quantify the observable porosity and cement hydration in solidified systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号