首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Paying attention to the ignition potentiality of static electricity, the relation between the discharge characteristics and the ignition of a dust cloud and the gas produced was studied, applying an electrical power supply of which the electrical circuit is adjustable. The effect of ignition characteristics on dust and gas explosions was investigated. The results of the study indicate that the probability of an explosion is influenced by the minimum ignition energy, spark duration time, feeding rate of ignition energy, circuit capacitance, ignition voltage, etc.  相似文献   

2.
The effect of CaCO3 powder, a typical inert dust, on the flame spread characteristics of wood dust layers was studied using an experimental device to understand the ignition characteristics of and develop inert explosion-proof technology for deposited wood dust. The results showed that the flame spread velocity (FSV) of the mixed dust layer was affected by the dispersion effect of CaCO3 powder and physical heat absorption. As the CaCO3 powder mass fraction increased, the FSV of the dust layer first increased and then decreased, reaching a peak at a 50% mass fraction. Moreover, the front-end temperature of the flame gradually decreased, and the red spark faded. The combustion reaction of the mixed dust layer could be more completed, and the colour of the combustion residue changed from charcoal black to charcoal grey. The coupling effect of the initial temperature and wind speed can promote an increase in the FSV in the mixed dust layer. The Gauss–Amp model of the FSV of the wood dust layer and mass fraction of CaCO3 powder showed that the peak of the FSV occurred when the mass fraction of CaCO3 powder was between 40 and 50%. Thus, a good inerting and explosion-proof effect can be achieved by using CaCO3 powder with a mass fraction of more than 50%; it can improve the whole inerting process. Inert explosion-proof technology should be considered when assessing fire and explosion risk of dust in real process industry situations.  相似文献   

3.
The formation of nitrile rubber (NBR) dust clouds during processing can lead to a potential dust explosion under certain conditions. However, the potential explosion hazard posed by NBR dust is usually overlooked by enterprises. In this paper, the explosive properties of NBR dust are investigated using a Hartmann tube, a G-G furnace, and a 20 L explosion chamber. The results showed that NBR dust could cause explosions severe enough to be classified as St-1. In addition, the thermal decomposition behavior of NBR dust under combustion conditions was investigated using a combination of thermogravimetric analysis coupled with Fourier transform infrared spectroscopy (TGA-FTIR). The results indicated that in the early stage, NBR dust mainly undergoes self-thermal decomposition to produce a large amount of combustible gas, which combines with oxygen to form a mixed gas and cause a gas-phase explosion. In addition, the participation of oxygen could lower the initial temperature of NBR dust thermal decomposition. As a result, decomposition occurred more quickly and a large amount of combustible gas was produced, thus expanding the range of dust explosions. Furthermore, these combustible gases exhibit varying degrees of toxicity, seriously affecting the life and health safety of relevant personnel. This work provides theoretical guidance for the development of safe procedures to prevent and address problems during NBR dust processing in enterprises.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号