首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Ignition Temperature (IT) of stoichiometric tetrafluoroethylene–air mixtures on hot walls was determined in a 3-dm³-reactor. Tests at elevated pressure conditions were performed, namely at 5, 15 and 25 bar(a), showing a decrease of the IT with the initial pressure. Furthermore, the measured ignition temperatures of stoichiometric tetrafluoroethylene–air mixtures were lower than the ignition temperatures required for the decomposition pure tetrafluoroethylene (Minimum Ignition Temperature of Decomposition, MITD) reported in previous works.Equations from the Semenov thermal explosion theory on spontaneous ignition were used to identify approximate combustion kinetics of tetrafluoroethylene from the experimental results. The determined kinetics was used for the prediction of the IT of stoichiometric tetrafluoroethylene-air by simplified calculation methods. A very good agreement with the experimental results was observed.  相似文献   

2.
A series of six large scale high pressure jet fires were conducted using natural gas and natural gas/hydrogen mixtures. Three tests involved natural gas and three involved a mixture of natural gas and hydrogen containing approximately 24% by volume hydrogen. For each fuel, the three tests involved horizontal releases from 20, 35 and 50 mm diameter holes at a gauge pressure of approximately 60 bar. During the experiments, the flame length and the incident radiation field produced around the fire were measured. The fires also engulfed a 1 m diameter horizontal pipe placed across the flow direction and about halfway along the flame. This pipe was instrumented to measure the heat fluxes to the pipe. The data obtained is compared with previous data obtained for various hydrocarbons at large scale.  相似文献   

3.
There is a lack of data on the self-ignition behaviour of tetrafluoroethylene in industrial sized equipment. Therefore, a facility was designed and constructed for the determination of the Minimum Ignition Temperature of Decomposition of tetrafluoroethylene in a cylindrical reactor with a volume of 100 dm3. Tests with initial pressures of 5 and 10 bar(a) were performed. The Minimum Ignition Temperature of Decomposition of tetrafluoroethylene was observed to decrease with the initial pressure, in agreement with previous experiments with small scale cylindrical vessels. This paper describes the test set-up und gives an overview of the achieved experimental results. In particular the effect of the reactor orientation (vertical or horizontal) is discussed. Furthermore, simplified equations from the Semenov thermal explosion theory are used to attempt extrapolations of previous and current data on the Minimum Ignition Temperature of Decomposition of tetrafluoroethylene to other vessel volumes or initial pressures. Moreover, the experimental data are plotted together against the heated volume to heated surface ratio, which should provide a better extrapolation to other vessel dimensions by taking into account that the efficiency of the dispersion of the heat generated by the reaction is different for two reactors with the same volume but different diameter. Finally, simplified methods for predicting the Minimum Ignition Temperature of Decomposition of tetrafluoroethylene presented previously by the authors are validated for large scale reactors with the experimental data collected within the current work.  相似文献   

4.
The wood gasification process poses serious concerns about the risk of explosion. The design of prevention and mitigation measures requires the knowledge of safety parameters, such as the maximum explosion pressure, the maximum rate of pressure rise and the gas deflagration index, KG, at standard ambient temperature (25 °C) and pressure (1 bar) conditions. However, the analysis at specific process conditions is strongly recommended, as the explosion behavior of gas mixtures may be completely different.In the work presented in this paper, the explosion behavior of mixtures with composition representative of wood chip-derived syngas (CO/H2/CH4/CO2/N2 mixtures with and without H2O) was experimentally studied in a closed combustion chamber. Experiments were run at two temperatures, 300 °C and 10 °C, and at atmospheric pressure. Test conditions were requested by the safety engineering designer of an existing industrial-scale wood gasification plant. In order to identify the specific fuel–air ratios to be analyzed, thus reducing the number of experimental tests, a preliminary thermo-kinetic study was performed.Results have shown that the mixtures investigated can be classified as low-reactivity mixtures, the higher value of KG found (∼36 bar m/s) being much lower than the KG value of methane (55 bar m/s @ 25 °C).  相似文献   

5.
The effects of enriching natural gas with hydrogen on local flame extinction, combustion instabilities and power output have been widely studied for both stationary and mobile systems. On the contrary, the issues of explosion safety for hydrogen–methane mixtures are still under investigation.In this work, experimental tests were performed in a 5 L closed cylindrical vessel for explosions of hydrogen–methane mixtures in stoichiometric air. Different compositions of hydrogen–methane were tested (from pure methane to pure hydrogen) at varying initial pressures (1, 3 and 6 bar).Results have allowed the quantification of the combined effects of both mixture composition (i.e., hydrogen content in the fuel) and initial pressure on maximum pressure, maximum rate of pressure rise and burning velocity. The measured burning velocities were also correlated by means of a Le Chatelier’s Rule-like formula. Good predictions have been obtained (at any initial pressure), except for mixtures with hydrogen molar content in the fuel higher than 50%.  相似文献   

6.
We present an approach for predicting the lower flammability limits of combustible gas in air. The influence of initial pressure and temperature on lower flammability limit has been examined in this study. The lower flammability limits of methane, ethylene and propane in air are estimated numerically at the pressure from one to 100 bar and the temperature from ambient to 1200 K. It was found that the predicted LFLs of methane, ethylene and propane decrease slightly with the elevated pressure at the high temperature. The LFLs variation for methane-air mixture is 0.17, 0.18, 0.18 volume% with the initial pressure from one to 100  bar at the initial temperature of 800 K, 1000 K and 1200 K respectively, which is significantly higher than that at lower temperature. And the LFL of methane-air mixture at 1200 K and 100 bar reaches 1.03 volume% which is much lower than that at 1 bar and ambient temperature. On the other hand, the LFLs variation is 0.11–0.12 volume% for ethylene-air mixture and 0.06–0.07 volume% for propane-air mixture with the initial temperature from 800 K to 1200 K at the same range of pressure. The LFL values at high temperatures and pressures represent higher risk of explosion.  相似文献   

7.
The aim of this work is to determine the influence of operating parameters such as the dispersion pressure, the ignition delay and height on the dust flammability. A Computational Fluid Dynamics (CFD) simulation, based on an Euler–Lagrange approach, was developed with Ansys Fluent™ and validated experimentally. Such analysis will facilitate the choice of the most conservative conditions for a flammability test. This paper is focused on a case study performed on wheat starch with the modified Hartmann tube. The dispersion process of the powder was studied with granulometric analyses performed in situ and high speed videos. Tests were performed with injections at gas pressure ranging from 3 to 6 bars and the evolution of the particle size distribution (PSD) was recorded at different ignition heights (5, 10 and 15 cm over the dispersion nozzle). The observations highlighted the presence of agglomeration/deagglomeration processes and dust segregation. Besides, a CFD simulation analysis was aimed at evaluating the impact of a set of parameters on the PSD and the local turbulence, which are closely linked to some flammability parameters. For this computational analysis, the CFD simulation was coupled with a collision treatment based on a Discrete Element Method (DEM) in order to consider the cohesive behavior of the combustible dust. Thus the results suggest performing the injection of the gases at approximately 5 bars for the flammability tests of wheat starch in order to obtain the finest PSD at a given ignition height. It is also shown that the finest PSD are obtained at 5 cm over the dispersion nozzle. However, the local instabilities and turbulence levels are so high during the first stages of the dispersion that the flame growth can be disturbed for short ignition delays. Moreover, the stabilization of the bulk of the dust cloud requires longer periods of time when the ignition sources are located at 15 cm. As a result, the recommended height to perform a flammability test is 10 cm in this case. Finally, this study proposes some tools that might improve the procedure of dust flammability testing.  相似文献   

8.
To evaluate the future application of X80 steel pipe in high-pressure oil and gas pipelines in China, hydrostatic burst tests were performed. The deformation and yield strength of longitudinal submerged arc-welding steel pipe Ф1016 × 18.4 mm under five applied pressure levels were measured. When the hoop stress is lower than 1.1SMYS, the pipe normally deforms elastically and uniformly with the maximum strain less than 0.3%. The slope offsets of the pressure–volume plot of pipe were discussed.  相似文献   

9.
Small scale tests were carried out at ISL's shock tube facility STA (100 mm inner diameter) to study the problem of closing a pipeline by means of an airbag in case of explosions or gas leakages. Experiments were carried out to simulate the flow in a pipeline at velocities and gas pressures as present in pipeline flows. In this study the gas used was nitrogen at static pressures of 0.2 up to 5 MPa and at flow velocities of 25 m/s up to 170 m/s. A special Nylon airbag, deployed from the tube wall into the pipe, was used to simulate the airbag inflation in a real pipeline. For this purpose a special gas filling system consisting of a gas generator with a reservoir volume of up to 500 cm3 which permits air pressures up to 17 MPa to be generated inside the airbag was developed at ISL. With a fast pyrotechnically opened valve the reservoir gas was released for airbag filling. The airbag inflation was triggered in such a way that it opened in nearly 3 ms into the pipe flow generated by the shock tube and continued for about 10 ms. For this application a special measuring chamber was designed and constructed with 20 measuring ports. Through two window ports, located one in front of the other, the airbag inflation could be visualized with up to 50 successive flash sparks illuminating a fast rotating film inside a drum camera. Pressure measurements using commercially available PCB pressure gauges at 9 measuring ports placed along the inner tube surface gave some hints on the behaviour of the wall pressure during airbag deployment. As a result from the experiments performed it is to conclude, that, with the Nylon airbag samples available, the pipe flow cannot be blocked by the inflating airbag. The flow forces acting on the airbag during deployment are in the shock tube experiments of the order of about 1000 N, which are not balanced by the airbags' neck, fixing it to the shock tube wall. This outcome suggests that a mechanical support is required to fix the airbag in its place during inflation.  相似文献   

10.
The laminar burning velocity of hydrogen–air mixtures was determined from pressure variations in a windowless explosion vessel. Initially, quiescent hydrogen–air mixtures of an equivalence ratio of 0.5–3.0 were ignited to deflagration in a 169 ml cylindrical vessel at initial conditions of 1 bar and 293 K. The behavior of the pressure was measured as a function of time and this information was subsequently exploited by fitting an integral balance model to it. The resulting laminar burning velocities are seen to fall within the band of experimental data reported by previous researchers and to be close to values computed with a detailed kinetics model. With mixtures of an equivalence ratio larger than 0.75, it was observed that more advanced methods that take flame stretch effects into account have no significant advantage over the methodology followed in the present work. At an equivalence ratio of less than 0.75, the laminar burning velocity obtained by the latter was found to be higher than that produced by the former, but at the same time close enough to the unstretched laminar burning velocity to be considered as an acceptable conservative estimate for purposes related to fire and explosion safety. It was furthermore observed that the experimental pressure–time curves of deflagrating hydrogen–air mixtures contained pressure oscillations of a magnitude in the order of 0.25 bar. This phenomenon is explained by considering the velocity of the burnt mixture induced by the expansion of combusting fluid layers adjacent to the wall.  相似文献   

11.
Although the effects of jet fires are often limited to rather short distances, if their flames impinge on a pipe or a vessel collapse can occur in very short times. In such cases, the heat flux on the affected equipment is very high and wall temperature can increase very rapidly. This can happen in parallel pipelines, if a release occurs and impinges on another one. Nevertheless, jet fire impingement has been scarcely studied. In this communication the results obtained from an experimental set-up are presented. Sonic jet fires impinged on a pipe containing stagnant air or water. The temperatures of the flames impinging on it were measured for the worst case (flame front-bright zone), as well as the evolution with time of the pipe wall temperature at different locations. Initial temperature increases up to around twenty °C/s were registered for the air inside, with maximum values of up to 600 °C reached in 2.5 min, and 800 °C in approximately 9 min. In the case of pipe containing water, in the zone of the wall in contact with the liquid the heating rates were much lower, the maximum temperature reached being up to approximately 150 °C. From the temperatures of the jet flames and of the pipe, the heat fluxes reaching the pipe and the corresponding heat transfer coefficients were obtained. The results obtained emphasized that safe distances are essential in pipelines, together with fire proofing and other safety measures.  相似文献   

12.
Many industrial processes are run at non-atmospheric conditions (elevated temperatures and pressures, other oxidizers than air). To judge whether and if yes to what extent explosive gas(vapor)/air mixtures will occur or may be generated during malfunction it is necessary to know the safety characteristic data at the respective conditions. Safety characteristic data like explosion limits, are depending on pressure, temperature and the oxidizer. Most of the determination methods are standardized for ambient conditions. In order to obtain determination methods for non-atmospheric conditions, particularly for higher initial pressures, reliable ignition criteria were investigated. Ignition tests at the explosion limits were carried out for mixtures of methane, propane, n-butane, n-hexane, hydrogen, ammonia and acetone in air at initial pressures up to 20 bar. The tests have been evaluated according to different ignition criteria: visual flame propagation, temperature and pressure rising. It could be shown that flame propagation and occasionally self-sustained combustion for several seconds occurred together with remarkable temperature rise, although the pressure rise was below 3%. The results showed that the combination of a pressure rise criterion of 2% and a temperature rise criterion of 100 K seems to be a suitable ignition criterion for the determination of explosion limits and limiting oxidizer concentration at higher initial pressures and elevated temperatures. The tests were carried out within the framework of a R&D project founded by the German Ministry of Economics and Technology.  相似文献   

13.
In the present paper, a comprehensive set of data on explosions in a spherical and a cylindrical vessel with central ignition was examined in order to check the validity of the cubic law, empirically found by many authors for explosions in small- and medium-size closed vessels. Experiments were performed on propylene–oxygen mixtures, in the presence of various additives (Ar, N2, CO2, CH2BrCl or exhaust gases), at total initial pressures p0 from 0.3 to 1.3 bar. For this pressure range, the cubic law was found valid for pressure rise Δp≤p0 and the cubic law constants were evaluated by a non-linear regression analysis. These constants were further used to compute the burning velocities of the examined systems according to the isothermal and adiabatic compression models. This simple and reliable method for burning velocity determination may find an useful application to complex systems, formed either by a composite fuel (landfill gas, gasoline, Diesel fuel) and air or by single fuel–air mixed with composite additives (i.e. their own exhaust gases).  相似文献   

14.
In the work presented in this paper, the propagation direction of the pressure waves generated during combustion-induced Rapid Phase Transition (cRPT) was investigated. To this end, explosion tests were performed for CH4/O2/N2/CO2 mixtures in a tubular reactor. Ignition was provided at the top or at the bottom of the vessel. Pressure time histories were recorded by two transducers positioned one at the top and the other one at the bottom.Results have shown that the preferential direction for the pressure waves is that of the flame propagation. When the cRPT phenomenon is weak, an over-adiabatic pressure peak (of around 10–20 bar) can be measured by only one transducer and, in particular, by the transducer far away from the ignition point. Conversely, when the cRPT phenomenon becomes severe, over-adiabatic peaks (as high as 250 bar) can be detected even by the other transducer. Such peaks are the result of separate cRPT events that occur very close to the transducers and, thus, are not damped along the vessel length. In spite of the fact that the upward flame propagation is faster, the cRPT phenomenon is more severe in the case of downward flame propagation.  相似文献   

15.
Explosion pressures are determined for rich methane–air mixtures at initial pressures up to 30 bar and at ambient temperature. The experiments are performed in a closed spherical vessel with an internal diameter of 20 cm. Four different igniter positions were used along the vertical axis of the spherical vessel, namely at 1, 6, 11 and 18 cm from the bottom of the vessel. At high initial pressures and central ignition a sharp decrease in explosion pressures is found upon enriching the mixture, leading to a concentration range with seemingly low explosion pressures. It is found that lowering the ignition source substantially increases the explosion pressure for mixtures inside this concentration range, thereby implying that central ignition is unsuitable to determine the explosion pressure for mixtures approaching the flammability limits.  相似文献   

16.
Ducts are often recommended in the design of dust explosion venting in order to discharge materials to safe locations. However, the maximum reduced overpressure increases in a duct-vented vessel rather than in a simply vented vessel. This needs to be studied further for understanding the duct-venting mechanism. Numerous duct-vented dust explosion experiments were conducted, using a 20 L spherical chamber at elevated static activation overpressures, ranging from 1.8 bar to 6 bar. Duct diameters of 15 mm and 28 mm, and duct lengths of 0 m (simply venting), 1 m and 2 m, were selected. Explosion pressures both in the vessel and in the duct were recorded by pressure sensors, with a frequency of 5 kHz. Flame signals in the duct were also obtained by phototransistors. Results indicate that the secondary explosion occurring in the duct increases the maximum reduced overpressure in the vessel. The secondary explosion is greatly affected by the duct diameter and static activation overpressure, and hence influences the amplification of the maximum reduced overpressure. Larger static activation overpressure decreases the severity of the secondary explosion, and hence decreases the increment in the maximum reduced overpressure. The secondary pressure peak is more obvious as the pressure accumulation is easier in a duct with a smaller diameter. However, the increment of the maximum reduced overpressure is smaller because blockage effect, flame front distortion, and turbulent mixing due to secondary explosion are weaker in a narrow duct. The influence of duct length on the maximum reduced overpressure is small at elevated static activation overpressures, ranging from 1.8 bar to 6 bar at 15 mm and 28 mm duct diameters.  相似文献   

17.
Gas explosion in connected vessels usually leads to high pressure and high rate of pressure increase which the vessels and pipes can not tolerate. Severe human casualties and property losses may occur due to the variation characteristics of gas explosion pressure in connected vessels. To determine gas explosion strength, an experimental testing system for methane and air mixture explosion in a single vessel, in a single vessel connected a pipe and in connected vessels has been set up. The experiment apparatus consisted of two spherical vessels of 350 mm and 600 mm in diameter, three connecting pipes of 89 mm in diameter and 6 m in length. First, the results of gas explosion pressure in a single vessel and connected vessels were compared and analyzed. And then the development of gas explosion, its changing characteristics and relevant influencing factors were analyzed. When gas explosion occurs in a single vessel, the maximum explosion pressure and pressure growth rate with ignition at the center of a spherical vessel are higher than those with ignition on the inner-wall of the vessel. In conclusion, besides ignition source on the inner wall, the ignition source at the center of the vessels must be avoided to reduce the damage level. When the gas mixture is ignited in the large vessel, the maximum explosion pressure and explosion pressure rising rate in the small vessel raise. And the maximum explosion pressure and pressure rising rate in connected vessels are higher than those in the single containment vessel. So whenever possible, some isolation techniques, such as fast-acting valves, rotary valves, etc., might be applied to reduce explosion strength in the integrated system. However, when the gas mixture is ignited in the small vessel, the maximum explosion pressures in the large vessel and in the small vessel both decrease. Moreover, the explosion pressure is lower than that in the single vessel. When gas explosion happens in a single vessel connected to a pipe, the maximum explosion pressure occurs at the end of the pipe if the gas mixture is ignited in the spherical vessel. Therefore, installing a pipe into the system can reduce the maximum explosion pressure, but it also causes the explosion pressure growth rate to increase.  相似文献   

18.
To study the occurrence conditions and propagation characteristics of deflagration to detonation transition (DDT) in linked vessels, two typical linked vessels were investigated in this study. The DDT of the methane–air mixture under different pipe lengths and inner diameters was studied. Results showed that the CJ detonation pressure of the methane–air mixture was 1.86 MPa, and the CJ detonation velocity was 1987.4 m/s. Compared with a single pipe, the induced distance of DDT is relatively short in the linked vessels. With the increase in pipeline length, DDT is more likely to occur. Under the same pipe diameter, the DDT induction distance in the vessel–pipe–vessel structure is shorter than that in the vessel–pipe structure. With the increase in pipeline diameter, the length of the pipe required to form the DDT is reduced. For linked vessels in which detonation formed, four stages, namely, slow combustion, deflagration, deflagration to detonation, and stable detonation, occurred in the vessels. Moreover, for a pipe diameter of 60 mm and a length of 8 m, overdriven detonation occurred in the vessel–pipe–vessel structure.  相似文献   

19.
In this paper, a parametric study has been carried out to predict the exit velocity of air through the leakage in the pipe with the help of CFD software ANSYS Fluent. The effect of air pressure in the pipe and the shape of leakage have been studied. Further experiments were also carried out to determine the exit velocity for the defined shape of leakage by varying the air pressure in the pipe. Experimentally, the velocity at a distance of 8 cm from the location of a leak in the horizontal plane was obtained with the help of differential pressure transducers. Using the experimental results, the computational results were validated. The results of the parametric simulation study showed that even for a pressure of 2 bars the velocity profile at the leak location indicates the supersonic state where the Mach number is greater than 1. The study is useful because it may be used as a foundation for risk assessment and safety management in the case of flammable gas leaks through gas pipes.  相似文献   

20.
Accidental gas explosions in industrial equipment are seldom initiated at atmospheric conditions. Furthermore, fuel–air mixtures are generally turbulent due to rotating parts or flows. Despite these considerations, few studies have been devoted to the analysis of explosion properties at conditions of temperature and pressure different from ambient and in the presence of turbulence; therefore, experiments are still needed, even at lab-scale, e.g. for the design of mitigation system as venting devices.In this work, experimental explosion tests have been performed in 5 l, cylindrical tank reactor with stoichiometric methane–air mixtures at initial pressure and temperature up to 600 kPa and 400 K, centrally ignited or top ignited, and with the effect of initial turbulence level by varying the velocity of the mechanical stirrer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号