首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 89 毫秒
1.
In the Netherlands there are around 400 “Seveso” sites that fall under the Dutch Major Hazards Decree (BRZO) 1999. Between 2006 and 2010 the Dutch Labour Inspectorate's Directorate for Major Hazard Control completed investigations of 118 loss of containment incidents involving hazardous substances from this group. On the basis of investigation reports the incidents were entered in a tailor-made tool called Storybuilder developed for the Dutch Ministry of Social Affairs and Employment for identifying the dominant patterns of technical safety barrier failures, barrier task failures and underlying management causes associated with the resulting loss of control events. The model is a bow-tie structure with six lines of defence, three on either side of the central loss of containment event. In the first line of defence, failures in the safety barriers leading to loss of control events were primarily equipment condition failures, pre start-up and safeguarding failures and process deviations such as pressure and flow failures. These deviations, which should have been recovered while still within the safe envelope of operation, were missed primarily because of inadequate indication signals that the deviations have occurred. Through failures of subsequent lines of defence they are developing into serious incidents. Overall, task failures are principally failures to provide adequate technical safety barriers and failures to operate provided barriers appropriately. Underlying management delivery failures were mainly found in equipment specifications and provisions, procedures and competence. The competence delivery system is especially important for identifying equipment condition, equipment isolation for maintenance, pre-start-up status and process deviations. Human errors associated with operating barriers were identified in fifty per cent of cases, were mostly mistakes and feature primarily in failure to prevent deviations and subsequently recover them. Loss of control associated with loss of containment was primarily due to the containment being bypassed (72% of incidents) and less to material strength failures (28%). Transfer pipework, connections in process plant and relief valves are the most frequent release points and the dominant release material is extremely flammable. It is concluded that the analysis of a large number of incidents in Storybuilder can support the quantification of underlying causes and provide evidence of where the weak points exist in major hazard control in the prevention of major accidents.  相似文献   

2.
The current research provides guidance on the prevention and mitigation of dust explosion using a Quantitative Risk Management Framework (QRMF). Using concepts drawn from previous studies, the framework consists of three main steps: (i) a new combined safety management protocol, (ii) the use of DESC (Dust Explosion Simulation Code) and FTA (Fault Tree Analysis) to assess explosion consequences and likelihood, respectively, and (iii) application of the hierarchy of controls (inherent, engineered and procedural safety). QRMF assessment of an industrial case study showed that the original process was at high risk. DESC simulations and Probit equations determined the destructive percentages. FTAs revealed high probabilities of explosion occurrence; in addition, detailed individual and societal risks calculations were made, before and after the framework was applied. Based on the hierarchy of controls technique, the framework showed significant risk reduction to the point where the residual risk was acceptable for the process.  相似文献   

3.
4.
Many substances react with water in such a way that flammable gases are formed. For transport issues this reaction may possess a considerable hazard especially if the cargo is wetted by rain or by water from other sources. In the UN Recommendations on the Transport of Dangerous Goods these kinds of problems are addressed. The UN test N.5 “Test method for substances which in contact with water emit flammable gases” corresponds to this hazard. Classification according to the test method is done by measurement of the gas evolution rate of the flammable gas by any suitable procedure. At BAM a gravimetric approach is used to measure the gas evolution rate. In this paper we present the evaluation of the apparatus by means of an absolute calibration routine utilizing a reaction where a known amount of gas is produced as well as the evaluation of important parameters influencing the gas evolution rate using different substances. It can be shown that the apparatus is capable of measuring absolute gas volumes as low as 6 mL with an acceptable error of about 17% as determined from the reaction of Mg with demineralized water.  相似文献   

5.
6.
A full probabilistic Explosion Risk Analysis (ERA) is commonly used to establish overpressure exceedance curves for offshore facilities. This involves modelling a large number of gas dispersion and explosion scenarios. Capturing the time dependant build up and decay of a flammable gas cloud size along with its shape and location are important parameters that can govern the results of an ERA. Dispersion simulations using Computational Fluid Dynamics (CFD) are generally carried out in detailed ERA studies to obtain these pieces of information. However, these dispersion simulations are typically modelled with constant release rates leading to steady state results. The basic assumption used here is that the flammable gas cloud build up rate from these constant release rate dispersion simulations would mimic the actual transient cloud build up rate from a time varying release rate. This assumption does not correctly capture the physical phenomena of transient gas releases and their subsequent dispersion and may lead to very conservative results. This in turn results in potential over design of facilities with implications on time, materials and cost of a project.In the current work, an ERA methodology is proposed that uses time varying release rates as an input in the CFD dispersion simulations to obtain the fully transient flammable gas cloud build-up and decay, while ensuring the total time required to perform the ERA study is also reduced. It was found that the proposed ERA methodology leads to improved accuracy in dispersion results, steeper overpressure exceedance curves and a significant reduction in the Design Accidental Load (DAL) values whilst still maintaining some conservatism and also reducing the total time required to perform an ERA study.  相似文献   

7.
Hydrocarbon leaks on offshore installations may result in severe consequences to personnel, to the environment and to assets. In order to prevent such leaks, it is crucial to understand their root causes. The objective of this paper is to study the circumstances of hydrocarbon leaks on the Norwegian continental shelf (NCS). In the study, all reported hydrocarbon leaks from process inventories on all offshore installations on the NCS, with an initial leak rate higher than 0.1 kg/s in the period 2008–2014, have been considered. This includes 78 hydrocarbon leaks, of which about 60% have occurred during manual intervention on normally pressurized systems. The dominating activity when leaks occur is preventive maintenance. A significant fraction of the leaks occur during the preparation for maintenance; such a preparation is typically carried out during the night shift. About half of the leaks are associated with wellhead area and manifolds, separation and compression systems. A substantial fraction of the leaks can be associated with verification faults, dominated by the failure to comply with procedural requirements that are needed to carry out independent verification.  相似文献   

8.
The current risk management approach for the Norwegian offshore petroleum industry came into effect in 2001 and has been stable with minor changes for 15 years. Relatively few new installations were slated for development until quite recently, and several new projects have been started in the last few years. The paper considers the risk management approach in the pre-FEED phase and builds on two case studies selected from the most recent cases. These case studies have been evaluated with respect to how uncertainties are considered in the early phase, based on the submission of the Plan for Development and Operation, their evaluations by authorities and the supporting documents. Both case studies involve new concepts for which there is no experience from similar environments and/or water depths. In spite of what could have been expected, the case studies conclude that uncertainties have not been in focus at all during concept development. This appears to be definitely the case for the licensees, but also to be the case for the authorities. Some suggestions are presented for what could have been considered by the licensees and authorities.  相似文献   

9.
Due to rapid industrialization, with high population density and constraints of land, it is expected that level of risks arising from the hazardous industries will increase in India in the coming decades. However, 30 years after the Bhopal accident (1984), except a few discrete regulations, there is as yet no integrated system for assessing and managing risks arising out of these hazardous industries in India. The gravity of aspects related to the management of industrial risk still remains crucially important. In particular, there is no standard guideline on risk analysis methodology, acceptability or tolerability criteria, nor is there an accident database or a risk reduction strategy for the areas where risk levels are already high. On top of this, there are technical and legislative gaps in the institutional framework to implement any of the above mentioned issues. With the backdrop of the Bhopal gas tragedy, the objective of this paper is therefore to evaluate the effectiveness of a comprehensive risk assessment framework for the emerging economy of India, in order to control and/or to reduce the risk level that exists. In this context, regulations and policies pertaining to industrial risk assessment were reviewed.  相似文献   

10.
Municipal Solid Waste in general and its organic fraction in particular is a potential renewable and non-seasonal resource. In this work, a life cycle assessment has been performed to evaluate the environmental impacts of two future scenarios using biogas produced from the organic fraction of municipal solid waste (OFMSW) to supply energy to a group of dwellings, respectively comprising distributed generation using solid oxide fuel cell (SOFC) micro-CHP systems and condensing boilers. The London Borough of Greenwich is taken as the reference case study. The system is designed to assess how much energy demand can be met and what is the best way to use the digestible waste for distributed energy purposes.The system is compared with two alternative scenarios fuelled by natural gas: a reference scenario, where the electricity is supplied by the grid and the heat is supplied from condensing boilers, and a fuel cell micro-CHP system. The results show that, although OFMSW alone can only supply between 1% and 4% of the total energy demand of the Borough, a saving of ∼130 tonnes of CO2 eq per year per dwelling equipped with micro-CHP is still achievable compared with the reference scenario. This is primarily due to the surplus electricity produced by the fuel cell when the micro-CHP unit is operated to meet the heat demand. Use of biogas to produce heat only is therefore a less desirable option compared with combined heat and power production. Further investigation is required to identify locally available feedstock other than OFMSW in order to increase the proportion of energy demand that can be met in this way.  相似文献   

11.
This paper presents the use of a model to predict sustained casing pressure (SCP), from early pressure buildup data, as a basis for inherently safer well integrity testing. Inherently safer principles aim to eliminate or reduce the hazards by design rather than by using protective features. SCP, a well integrity issue exhibited in many wells, is any measurable pressure that rebuilds after being bled down and attributable to causes other than artificially applied pressure or temperature fluctuations in the well. Intrusion of gas, resulting in SCP, can occur because of poor cement bond in the casing or cement deterioration. Gas entering the annulus migrates to the wellhead and represents a hazard due to increased wellhead pressure and the gas inventory. Compromised well integrity can have catastrophic consequences on both environmental and safety aspects.Most regulations require the monitoring, testing and, eventually, the elimination of SCP. However, test data analysis is predominantly qualitative and limited to arbitrary criteria. Due to the high percentage of wells that present SCP, accurate, safe and preferably fast testing methods are needed. This paper implements an analytical model, rooted in the transport processes and thermodynamics of the system, to predict pressure profiles and gas accumulation during SCP testing from early-time pressure buildup data. The amount of gas accumulated during different testing criteria, being 1) current practices and 2) early diagnostic by the analytical model, is calculated and compared. Results show that using the analytical model as a predictive tool, testing time is reduced significantly, thereby limiting the amount of gas accumulated and reducing the risk. This makes the testing procedure inherently safer as well as less time consuming.  相似文献   

12.
The objective of this research was the implementation of tools for the evaluation of solvents trough property screening in the early stages of process development. An important feature of the tools is that the implementation of indexes, scores, or weights is avoided. Information already available from the literature was stored in a database in order to turn raw data into decision making information. As a result, a solvent radar chart, a solvent representation table, and a solvent telescopying tool were developed in an ASP.NET application. The synthesis of Propranolol was used as study case in order to explore the selection of solvents in the early stages of process development. The replacement of diethyl ether was possible in the extraction step, while solvent choices were detected for potential telescoping for extraction and crystallisation steps. Solubility was found as a critical parameter in telescoping analysis. The methodology proposed enhanced the view towards a more holistic perspective and a more robust solvent screening process. As a consequence, the next steps into solvent evaluation and process development can be reduced.  相似文献   

13.
Leakage diagnosis of hydrocarbon pipelines can prevent environmental and financial losses. This work proposes a novel method that not only detects the occurrence of a leakage fault, but also suggests its location and severity. The OLGA software is employed to provide the pipeline inlet pressure and outlet flow rates as the training data for the Fault Detection and Isolation (FDI) system. The FDI system is comprised of a Multi-Layer Perceptron Neural Network (MLPNN) classifier with various feature extraction methods including the statistical techniques, wavelet transform, and a fusion of both methods. Once different leakage scenarios are considered and the preprocessing methods are done, the proposed FDI system is applied to a 20-km pipeline in southern Iran (Goldkari-Binak pipeline) and a promising severity and location detectability (a correct classification rate of 92%) and a low False Alarm Rate (FAR) were achieved.  相似文献   

14.
The Bhopal disaster was a gas leak incident in India, considered the world's worst industrial disaster happened around process facilities. Nowadays the process facilities in petrochemical industries have becoming increasingly large and automatic. There are many risk factors with complex relationships among them. Unfortunately, some operators have poor access to abnormal situation management experience due to the lack of knowledge. However these interdependencies are seldom accounted for in current risk and safety analyses, which also belonged to the main factor causing Bhopal tragedy. Fault propagation behavior of process system is studied in this paper, and a dynamic Bayesian network based framework for root cause reasoning is proposed to deal with abnormal situation. It will help operators to fully understand the relationships among all the risk factors, identify the causes that lead to the abnormal situations, and consider all available safety measures to cope with the situation. Examples from a case study for process facilities are included to illustrate the effectiveness of the proposed approach. It also provides a method to help us do things better in the future and to make sure that another such terrible accident never happens again.  相似文献   

15.
The paper focuses on risk sources under no legislative pressure in the field of prevention of major accidents. Despite this, they can represent significant sources of risk of accidents.The aim of the paper is to present the results of the risk assessment associated with the operation of enterprises not regulated by the SEVESO III Directive (the so-called subliminal enterprises), to provide information on possible operational problems and to verify the applicability of recognized risk analysis methods for these specific sources of risk. Last but not least, its purpose is to point out that subliminal enterprises, due to their location close to residential areas or areas with a high concentration of population, pose a serious risk to the population.The paper summarizes the results of the quantitative risk assessment of a specific enterprise not included in the Seveso Directive – a filling station. Filling stations are frequently located in built-up areas with a dense coefficient of habitability. Due to their number, location (e.g. close to residential areas), frequency of occurrence of persons in the area and handling of dangerous substances during normal operation, they can have negative or even tragic consequences to the life and health of the population.Due to the non-existent risk assessment methodology for enterprises with subliminal quantities of dangerous substances and the lack of a systematic search for risk sources, a risk assessment procedure for these companies is designed.  相似文献   

16.
The hazards of dust explosions prevailing in plants are dependent on a large variety of factors that include process parameters, such as pressure, temperature and flow characteristics, as well as equipment properties, such as geometry layout, the presence of moving elements, dust explosion characteristics and mitigating measures. A good dust explosion risk assessment is a thorough method involving the identification of all hazards, their probability of occurrence and the severity of potential consequences. The consequences of dust explosions are described as consequences for personnel and equipment, taking into account consequences of both primary and secondary events.While certain standards cover all the basic elements of explosion prevention and protection, systematic risk assessments and area classifications are obligatory in Europe, as required by EU ATEX and Seveso II directives. In the United States, NFPA 654 requires that the design of the fire and explosion safety provisions shall be based on a process hazard analysis of the facility, process, and the associated fire or explosion hazards. In this paper, we will demonstrate how applying such techniques as SCRAM (short-cut risk analysis method) can help identify potentially hazardous conditions and provide valuable assistance in reducing high-risk areas. The likelihood of a dust explosion is based on the ignition probability and the probability of flammable dust clouds arising. While all possible ignition sources are reviewed, the most important ones include open flames, mechanical sparks, hot surfaces, electric equipment, smoldering combustion (self-ignition) and electrostatic sparks and discharges. The probability of dust clouds arising is closely related to both process and dust dispersion properties.Factors determining the consequences of dust explosions include how frequently personnel are present, the equipment strength, implemented consequence-reducing measures and housekeeping, as risk assessment techniques demonstrate the importance of good housekeeping especially due to the enormous consequences of secondary dust explosions (despite their relatively low probability). The ignitibility and explosibility of the potential dust clouds also play a crucial role in determining the overall risk.Classes describe both the likelihood of dust explosions and their consequences, ranging from low probabilities and limited local damage, to high probability of occurrence and catastrophic damage. Acceptance criteria are determined based on the likelihood and consequence of the events. The risk assessment techniques also allow for choosing adequate risk reducing measures: both preventive and protective. Techniques for mitigating identified explosions risks include the following: bursting disks and quenching tubes, explosion suppression systems, explosion isolating systems, inerting techniques and temperature control. Advanced CFD tools (DESC) can be used to not only assess dust explosion hazards, but also provide valuable insight into protective measures, including suppression and venting.  相似文献   

17.
This paper numerically modeled previous experimental results and quantitatively revealed the attenuation effect of a barrier material on a blast wave. Four fluids were considered in the present study: the detonation products, water, foamed polystyrene, and air. These fluids were modeled by Jones-Wilkins-Lee (JWL), stiffened gas, and ideal gas equations of state. A mixture of water and foamed polystyrene was used as a barrier to encircle a 0.1 kg mass of spherical pentolite, and the interface problem between the barrier and the blast wave was investigated. The simulation parameters were the radius and the water volume fraction of the barrier. To elucidate the effect of the barrier, we conducted two series of numerical simulations; one without a barrier, and another with a barrier of 50 or 100 mm in outer radius and 0–1 in the water volume fraction. Peak overpressure, positive impulse, and pressure history all agreed well with the previous experimental results. We focused on the energy transfer from high-pressure detonation products to other fluids. The sum of the kinetic energies of the detonation products and the barrier induced by the blast wave could quantitatively estimate the attenuation effect of the blast wave and was minimized when the water volume fraction was 0.5, as was the case in the previous experiment.  相似文献   

18.
Petrochemical plants are continuously turning into large-size corporations, the installations of facilities show a developing trend from ground to underground because of the difference in land using rate. In this regard, the safety distance of petrochemical equipment buried in both ground and underground cases were investigated based on risk assessment. As a case study, gasoline tank and LPG tank set on the ground and underground are singled out to compare the risks involved. The research showed that the setting case of installation had a great influence on safety distance. Two cases have 80% reduction of equivalent safety distance compared with the rest of the cases. It was found that when the gasoline storage tank was placed underground alone, the PLL value decreased by 36.7%. Only LPG tank was placed underground, and the PLL decreased by 6.33%, and the gasoline and LPG storage tanks were placed underground simultaneously, the PLL value declined by 42.3%. Thus, the layout of plants could be further optimized, which can greatly improve the performances of land use efficiency and safety. In addition, this paper, the selection of embedding methods and the sensitivity of underground case to overpressure was resumed from two aspects: soil properties and burial depth. For the soil properties, it was found that the water saturated sandy soil with high air content and the low density unsaturated sandy soil had better effects on weakening overpressure. Such properties are particularly beneficial to reducing the occurrence rate of accidents. In terms of burial depth, it can be observed that as the burial depth was changed from 0.5m to 1.1m, the value of overpressure has dropped dramatically. When the burial depth was 2m, the damage to personnel and buildings has been greatly reduced beyond 2m from the explosion center.  相似文献   

19.
The potential for major accidents is inherent in most industries that handle or store hazardous substances, for e.g. the hydrocarbon and chemical process industries. Several major accidents have been experienced over the past three decades. Flixborough Disaster (1974), Seveso Disaster (1976), Alexander Kielland Disaster (1980), Bhopal Gas Tragedy (1984), Sandoz Chemical Spill (1986), Piper Alpha Disaster (1988), Philips 66 Disaster (1989), Esso Longford Gas Explosion (1998), Texas City Refinery Explosion (2005), and most recently the Macondo Blowout (2010) are a few examples of accidents with devastating consequences.Causes are being exposed over time, but in recent years maintenance influence tends to be given less attention. However, given that some major accidents are maintenance-related, we intend to concentrate on classifying them to give a better insight into the underlying and contributing causes.High degree of technological and organizational complexity are attributes of these industries, and in order to control the risk, it is common to deploy multiple and independent safety barriers whose integrity cannot be maintained without adequate level of maintenance. However, maintenance may have a negative effect on barrier performance if the execution is incorrect, insufficient, delayed, or excessive. Maintenance can also be the triggering event.The objectives of this article are: (1) To investigate how maintenance impacts the occurrence of major accidents, and (2) To develop classification schemes for causes of maintenance-related major accidents.The paper builds primarily on model-based and empirical approaches, the latter being applied to reports on accident investigation and analysis. Based on this, the Work and Accident Process (WAP) classification scheme was proposed in the paper.  相似文献   

20.
The paper describes the application of a new computer automated tool, developed by us, in the risk analysis of a typical chemical industry engaged in the manufacture of linear alkyl benzene. Using the tool—a comprehensive software package -III (MAXimum CREDible accident analysis)—nine different scenarios, one for each storage unit, have been studied. It is observed that the accident scenario for chlorine (instantaneous release followed by dispersion) leads to the largest area-under-lethal-impact, while the accident scenario for propylene (CVCE followed by fireball) forecasts the most intense damage per unit area. The accidents involving propylene, benzene, and fuel oil have a high possibility of causing domino/secondary accidents as their destructive impacts (shock waves, heat load) would envelope other storage and process units.Besides demonstrating the utilizability of -III, this study also focuses attention on the need to bestow greater effort towards risk assessment/crisis management. The authors hope that the study will highlight the severity of the risk posed by the industry and thus generate safety consciousness among plant managers. The study may also help in developing accident-prevention strategies and the installation of damage control devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号