首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This paper describes an experimental investigation of turbulent flame propagation in propane-air mixtures, and in mechanical suspensions of maize starch dispersed in air, in a closed vessel of length 3.6 m and internal cross-section 0.27 m × 0.27 m. The primary motivation for the work is to gain improved understanding of turbulent flame propagation in dust clouds, with a view to develop improved models and methods for assessing explosion risks in the process and mining industries. The study includes computational fluid dynamics (CFD) simulations with FLACS and DESC, for gas and dust explosions respectively. For initially quiescent propane-air mixtures, FLACS over-predicts the rate of combustion for fuel-lean mixtures, and under-predicts for fuel-rich mixtures. The simulations tend to be in better agreement with the experimental results for initially turbulent gaseous mixtures. The experimental results for maize starch vary significantly between repeated tests, but the subset of tests that yields the highest explosion pressures are in reasonable agreement with CFD simulations with DESC.  相似文献   

2.
A novel computational approach based on the coupled 3D Flame-Tracking–Particle (FTP) method is used for numerical simulation of confined explosions caused by preflame autoignition. The Flame-Tracking (FT) technique implies continuous tracing of the mean flame surface and application of the laminar/turbulent flame velocity concepts. The Particle method is based on the joint velocity–scalar probability density function approach for simulating reactive mixture autoignition in the preflame zone. The coupled algorithm is supplemented with the database of tabulated laminar flame velocities as well as with reaction rates of hydrocarbon fuel oxidation in wide ranges of initial temperature, pressure, and equivalence ratio. The main advantage of the FTP method is that it covers both possible modes of premixed combustion, namely, frontal and volumetric. As examples, combustion of premixed hydrogen–air, propane–air, and n-heptane–air mixtures in enclosures of different geometry is considered. At certain conditions, volumetric hot spots ahead of the propagating flame are identified. These hot spots transform to localized exothermic centers giving birth to spontaneous ignition waves traversing the preflame zone at very high apparent velocities, i.e., nearly homogeneous preflame explosion occurs. The abrupt pressure rise results in the formation of shock waves producing high overpressure peaks after reflections from enclosure walls.  相似文献   

3.
DME is thought to be a good alternative fuel due to its cleanliness and more excellent fuel economy. Although the prediction and loss prevention of flammability hazard is very important for safety of DME installations, the evaluation method with sufficient accuracy has not been established. In this study, a numerical combustion model is constructed and a 3-dimensional computational fluid dynamics (CFD) simulation of a premixed DME/air explosion in a large-scale domain is conducted. The main feature of the numerical model is the solution of a transport equation for the reaction progress variable using a function for turbulent flame velocity which characterizes the turbulent regime of propagation of free flames derived by introducing the fractal theory. The model enables the calculation of premixed gaseous explosion without using fine mesh of the order of micrometer, which would be necessary to resolve the details of all instability mechanisms. The value of the empirical constant contained in the function for turbulent flame velocity is evaluated by analyzing the experimental data of LPG/air and DME/air premixed explosions. The comparison of flame behavior between the experimental result and numerical simulation shows good agreement.  相似文献   

4.
Hydrogen-enrichment has been proposed as a useful method to overcome drawbacks (local flame extinction, combustion instabilities, lower power output, etc.) associated to turbulent premixed combustion of natural gas in both stationary and mobile systems. For the safe use of hydrogen-enriched hydrocarbon fuels, explosion data are needed.In this work, a comparative experimental study of the explosion behavior of stoichiometric hydrogen-enriched methane/air (with 10% of hydrogen molar content in the fuel) and pure methane/air mixtures is presented. Tests were carried out in a 5 l closed cylindrical vessel at different initial pressures (1, 3 and 6 bar), and starting from both quiescent and turbulent conditions.Results allow quantifying the combined effects of hydrogen substitution to methane, pressure and turbulence on maximum pressure, maximum rate of pressure rise, burning velocity and Markstein lengths.  相似文献   

5.
The propagation of a flame is investigated experimentally and theoretically for a large, horizontal combustion tube containing a mixture of air and aluminum powder with pre-existing turbulence. One end of the tube is closed and the other is connected to a large dump-tank. Twenty dispersion systems are used on the tube to produce a uniform suspension of aluminum dust in the tube with a mean diameter of 6 μm. The characteristics of a flame front from the ignitors at the closed end are measured using photodiodes and the development of pressure is monitored by transducers. Experimental results revealed the entire process of an accelerating flame and the development of shock waves. A set of conservation equations for two-phase turbulent combustion flow is derived, using the two-fluid model, kε model, Hinze–Tchen model and EBU-Arrhenius model for turbulent combustion. The SIMPLE scheme usually applied to the homogeneous turbulent combustion is extended to fit this two-phase, reactive behavior. The results of calculations show the positive feedback coupling among combustion, expansion and turbulence during flame propagation. Computed and measured results are generally in good agreement.  相似文献   

6.
The history of the development of the process industry has been punctuated by a number of hazardous explosions, sometimes very severe. A few of them are still in the memory and certainly contributed to the birth of safety engineering. It has been known for more than one century than combustible dusts suspended in air are responsible for a part of those explosions but contrariwise to gas explosions, the available knowledge and practise seems still contain a significant part of empirism. The work summarised into this paper is an attempt to contribute to a better understanding of the explosion mechanisms of dust clouds. Hopefully, such additional information may help to refine the safety analysis exercise in the future. A specific effort has been devoted to combustion processes in the flame and the results indicate similarities with premixed gaseous flames. Several fundamental questions are addressed such as the incidence of thermal radiation, turbulence,… This information is important to treat ignition aspects. For spark type of ignition, it is shown that an absolute minimum ignition energy should exist for some dust clouds with a similar meaning than for premixed gaseous flames. For hot surface ignition, the standard ignition temperature (Godbert–Greenwald) seems to be reasonably correlated to the size and critical ignition temperature of the heating body. The possible implications of this new information within the scope of industrial safety are addressed in conclusion.  相似文献   

7.
The current work examines regimes of the hydrogen–oxygen flame propagation and ignition of mixtures heated by radiation emitted from the flame. The gaseous phase is assumed to be transparent for the radiation, while the suspended particles of the dust cloud ahead of the flame absorb and reemit the radiation. The radiant heat absorbed by the particles is then lost by conduction to the surrounding unreacted gaseous phase so that the gas phase temperature lags that of the particles. The direct numerical simulations solve the full system of two phase gas dynamic time-dependent equations with a detailed chemical kinetics for a plane flames propagating through a dust cloud. It is shown that depending on the spatial distribution of the dispersed particles and on the value of radiation absorption length the consequence of the radiative preheating of the mixture ahead of the flame can be either the increase of the flame velocity for uniformly dispersed particles or ignition either new deflagration or detonation ahead of the original flame via the Zel'dovich gradient mechanism in the case of a layered particle-gas cloud deposits. In the latter case the ignited combustion regime depends on the radiation absorption length and correspondingly on the steepness of the formed temperature gradient in the preignition zone that can be treated independently of the primary flame. The impact of radiation heat transfer in a particle-laden flame is of paramount importance for better risk assessment and represents a route for understanding of dust explosion origin.  相似文献   

8.
Explosive gas mixtures and explosive dust clouds, once existing, exhibit similar ignition and combustion features. However, there are two basic differences between dusts and gases which are of substantially greater significance in design of safety standards than these similarities. Firstly, the physics of generation and up-keeping of dust clouds and premixed gas/vapour clouds are substantially different. This means that in most situations where accidental explosive gas clouds may be produced quite readily, generation of explosive dust clouds would be highly unlikely. Secondly, contrary to premixed gas flame propagation, the propagation of flames in dust/air mixtures is not limited only to the flammable dust concentration range of dynamic clouds. The state of stagnant layers/deposits offers an additional discrete possibility of flame propagation.

The two European Directives 94/9/EC (1994) and 1999/92/EC (1999) primarily address gases/vapours, whereas the particular properties of dusts are not addressed adequately. Some recent IEC and European dust standards resulting from this deficiency are discussed, and the need for revising the two directives accordingly is emphasized.  相似文献   


9.
Flame propagation behaviors of nano- and micro-polymethyl methacrylate (PMMA) dust explosions were experimentally studied in the open-space dust explosion apparatus. High-speed photography with normal and microscopic lenses were used to record the particle combustion behaviors and flame microstructures. Simple physical models were developed to explore the flame propagation mechanisms. High-speed photographs showed two distinct flame propagation behaviors of nano- and micro-PMMA dust explosions. For nano-particles, flame was characterized by a regular spherical shape and spatially continuous combustion structure combined with a number of luminous spot flames. The flame propagation mechanism was similar to that of a premixed gas flame coupled with solid surface combustion of the agglomerates. In comparison, for micro-particles, flame was characterized by clusters of flames and the irregular flame front, which was inferred to be composed of the diffusion flame accompanying the local premixed flame. It was indicated that smaller particles maintained the leading part of the propagating flame and governed the combustion process of PMMA dust clouds. Increasing the mass densities from 105 g/m3 to 217 g/m3 for 100 nm PMMA particles, and from 72 g/m3 to 170 g/m3 for 30 μm PMMA particles, the flame luminous intensity, scale and the average propagation velocity were enhanced. Besides, the flame front became more irregular for 30 μm PMMA dust clouds.  相似文献   

10.
Correlating turbulent burning velocity to turbulence intensity and basic flame parameters-like laminar burning velocity for dust air mixtures is not only a scientific challenge but also of practical importance for the modelling of dust flame propagation in industrial facilities and choice of adequate safety strategy. The open tube method has been implemented to measure laminar and turbulent burning velocities at laboratory scale for turbulence intensities in the range of a few m/s. Special care has been given to the experimental technique so that a direct access to the desired parameters was possible minimising interpretation difficulties. In particular, the flame is propagating freely, the flame velocity is directly accessible by visualisation and the turbulence intensity is measured at the flame front during flame propagation with special aerodynamic probes. In the present paper, those achievements are briefly recalled. In addition, a complete set of experiments for diametrically opposed dusts, starch and aluminium, has been performed and is presented hereafter. The experimental data, measured for potato dust air mixtures seem to be in accordance with the Bray Gülder model in the range of 1.5 m/s<u′<3.5 m/s. For a further confirmation, the measurement range has been extended to lower levels of turbulence of u′<1.5 m/s. This could be achieved by changing the mode of preparation of the dust air mixture. In former tests, the particles have been injected into the tube from a pressurised dust reservoir; for the lower turbulence range, the particles have been inserted into the tube from above by means of a sieve–riddler system, and the turbulence generated from the pressurised gas reservoir as before. For higher levels of turbulence, aluminium air mixtures have been investigated using the particle injection mode with pressurised dust reservoir. Due to high burning rates much higher flame speeds than for potato dusts of up to 23 m/s have been obtained.  相似文献   

11.
为研究管道结构对氢-空预混气体爆炸特性影响,采用实验与数值模拟相结合的方法,分析不同管道结构内氢-空预混气体燃爆时火焰传播进程、爆炸压力、湍流动能变化及流场分布.结果表明:90°弯管对氢-空预混气体爆炸强度增强作用明显高于T型分岔管和直管.火焰阵面在结构突变处褶皱变形较明显,并出现大尺度强湍流和涡团,气团脉动速度与湍流...  相似文献   

12.
13.
To reveal clearly the effects of particle thermal characteristics on flame microstructures during organic dust explosions, three long-chain monobasic alcohols, solid at room temperature and similar in physical-chemical properties, were chosen to conduct experiments in a half-closed chamber. In the experiments, the dust materials were dispersed into the chamber by air to form dust clouds and the hybrids were ignited by an electrical spark. A high-speed optical schlieren system was used to record the flame propagation behaviors. A fine thermocouple and an ion current probe were respectively used to measure the flame temperature profile and the reaction behaviors of the combustion zone. Based on the experimental results, combustion behaviors and flame microstructures in dust clouds with different thermal characteristics were analyzed in detail. As a result, it was found that the dust flame surfaces were completely covered by cellular structures that significantly increased the flame frontal areas. Flame propagated more quickly and the number of the cellular cells increased as increasing the volatility of the particles. On the contrary, maximum temperature and the thickness of the preheated zone decreased as increasing the volatility of the particles. According to the ion current profile, the particles in the preheat zone were pyrolyzed to intermediate radicals and the radicals' fraction in the higher volatile dust flame was higher than that in the lower volatile dust flame.  相似文献   

14.
The investigation of flame propagation accompanying the explosions of unconfined gaseous reactive clouds which are diluted in atmosphere ambient is a fundamental interest in the analysis of industrial risk assessment.Following the previous work [Sochet, I., Guelon, F., Gillard, P. (2002). Deflagrations of non-uniform mixtures: A first experimental approach, Journal of physics, 12, 7–273, 7–280], an experimental study is conducted on a deflagration of a hydrogen/oxygen gaseous cloud which is released in air. The burning velocity is directly or indirectly measured. The flammability limits of the non homogeneous cloud has been as well investigated.  相似文献   

15.
The structure of flame propagating through lycopodium dust clouds has been investigated experimentally. Upward propagating laminar flames in a vertical duct of 1800 mm height and 150×150 mm square cross-section are observed, and the leading flame front is also visualized using by a high-speed video camera. Although the dust concentration decreases slightly along the height of duct, the leading flame edge propagates upwards at a constant velocity. The maximum upward propagating velocity is 0.50 m/s at a dust concentration of 170 g/m3. Behind the upward propagating flame, some downward propagating flames are also observed. Despite the employment of nearly equal sized particles and its good dispersability and flowability, the reaction zone in lycopodium particles cloud shows the double flame structure in which isolated individual burning particles (0.5–1.0 mm in diameter) and the ball-shaped flames (2–4 mm in diameter; the combustion time of 4–6 ms) surrounding several particles are included. The ball-shaped flame appears as a faint flame in which several luminous spots are distributed, and then it turns into a luminous flame before disappearance. In order to distinguish these ball-shaped flames from others with some exceptions for merged flames, they are defined as independent flames in this study. The flame thickness in a lycopodium dust flame is observed to be 20 mm, about several orders of magnitude higher than that of a premixed gaseous flame. From the microscopic visualization, it was found that the flame front propagating through lycopodium particles is discontinuous and not smooth.  相似文献   

16.
17.
This paper presents a 2-dimensional numerical model of Eulerian–Lagrangian multi-phase combustion flow to predict maize starch explosions in a 12 m3 silo. The flow field after ignition, flame propagation velocity and pressure development histories etc. during the explosion, are calculated. The data of non-uniform initial conditions including dust concentration, flow velocity and turbulent RMS velocity in the silo for this model are adopted from Hauert, Vogl and Radandt (1994) [Hauert, F., Vogl, A., Radandt, S. (1994). Measurement of turbulence and dust concentration in silos and vessels. 6th international colloquium on dust explosions (pp. 71–80), Shenyang, China, August 28–September 2, 1994.]. A simple concept of dust granule taking into consideration dust dispersion efficiency is proposed and introduced. The Lagrangian method is used to trace trajectories and granules, so it is easier to consider particle size distribution. The kε model is used to simulate the turbulence of the gas phase, and the particle's pulsation is modeled by random vector wind generated by the surrounding gas. In the combustion model, vaporization of water, volatilization of volatile, gas phase reaction and the particle's surface reaction are taken into account.  相似文献   

18.
In this paper, large eddy simulation coupled with a turbulent flame speed cloure (TFC) subgrid combustion model has been utilized to simulate premixed methane–air deflagration in a semi-confined chamber with three obstacles mounted inside.The computational results are in good agreement with published experimental data, including flame structures, pressure time history and flame speed. The attention is focused on the flame flow field interaction, pressure dynamics, as well as the mechanism of obstacle-induced deflagration. It is found that there is a positive feedback mechanism established between the flame propagation and the flow field. The pressure time history can be divided into four stages and the pseudo-combustion concept is proposed to explain the pressure oscillation phenomenon. The obstacle-induction mechanism includes direct effect and indirect effect, but do not always occur at the same time.  相似文献   

19.
For the development of a standardized method for measuring the explosion safety characteristics of combustible hybrid dust/vapor mixtures, the influence of the ignition delay time needs to be investigated. The ignition delay time, defined as the time between the injection of dust and the activation of the ignition source, is related to the turbulence of the mixture and thus to the pressure rise rate. The ignition source for pure vapors, however, has to be activated in a quiescent atmosphere according to the standards. Nevertheless, when measuring the explosion safety characteristics of hybrid mixtures, it is important that the dust be in suspension around the igniter. Like pure dust/air mixtures, hybrid dust/vapor/air mixtures need to be ignited in a turbulent atmosphere to keep the dust in suspension.This work will therefore investigate the influence of ignition delay times on the severity of hybrid explosions. It was generally found that at shorter ignition delay times, (dp/dt)ex increased due to higher turbulence and decreases as the dust sinks to the bottom of the 20 L-sphere. This effect is more pronounced for hybrid mixtures with higher vapor content compared to dust content.  相似文献   

20.
A 20 L spherical explosive device with a venting diameter of 110 mm was used to study the vented pressure and flame propagation characteristics of corn dust explosion with an activation pressure of 0.78–2.1 bar and a dust concentration of 400∼900 g/m3. And the formation and prevention of secondary vented flame are analyzed and discussed. The results show that the maximum reduced explosion overpressure increases with the activation pressure, and the vented flame length and propagation speed increase first and then decrease with time. The pressure and flame venting process models are established, and the region where the secondary flame occurs is predicted. Whether there is pressure accompanying or not in the venting process, the flame venting process is divided into two stages: overpressure venting and normal pressure venting. In the overpressure venting stage, the flame shape gradually changes from under-expanded jet flame to turbulent jet flame. In the normal pressure venting stage, the flame form is a turbulent combustion flame, and a secondary flame occurs under certain conditions. The bleed flames within the test range are divided into three regions and four types according to the shape of the flame and whether there is a secondary flame. The analysis found that when the activation pressure is 0.78 bar and the dust concentration is less than 500 g/m3, there will be no secondary flame. Therefore, to prevent secondary flames, it is necessary to reduce the activation pressure and dust concentration. When the dust concentration is greater than 600 g/m3, the critical dust concentration of the secondary flame gradually increases with the increase of the activation pressure. Therefore, when the dust concentration is not controllable, a higher activation pressure can be selected based on comprehensive consideration of the activation pressure and destruction pressure of the device to prevent the occurrence of the secondary flame.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号