首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many accidents involve two-phase releases of hazardous chemicals into the atmosphere. This paper describes the results of the fourth phase of a Joint Industry Project (JIP) on liquid jets and two-phase droplet dispersion. The objective of Phase IV of the JIP was to generate experimental rainout data for non-flashing experiments, and to develop recommendations for the best methodology to predict rainout [total rainout mass and its spatial distribution (‘distributed’ rainout)].Phase IV of the JIP first included rainout experiments by the UK Health and Safety Laboratory (HSL) for sub-cooled releases of water and xylene with a range of orifice sizes and stagnation pressures. See the companion paper II for further details. Secondly model validation was carried out by DNV Software for these experiments using different correlations for the initial droplet size (Sauter Mean Diameter, SMD), i.e. the CCPS SMD correlation and the Phase III JIP SMD correlation. The validation includes flow rates, droplet size, distributed rainout and cloud temperature drop. Subsequently validation was considered for a wider range of experiments from the literature (sub-cooled and superheated releases) for both SMD and total rainout. Adopted rainout methods comprised both methods including explicit modelling of the droplets (using an extended version of Phast dispersion model UDM), as well as more simple methods based on rainout correlations without droplet modelling. Recommendations are made for the most accurate droplet size and rainout modelling. A modified CCPS UDM droplet size correlation has been shown to agree best against experimental rainout data.  相似文献   

2.
Many accidents involve two-phase releases of hazardous chemicals into the atmosphere. This paper describes the results of a third phase of a Joint Industry Project (JIP) on liquid jets and two-phase droplet dispersion. The aim of the project is to increase the understanding of the behaviour of sub-cooled non-flashing and superheated flashing liquid jets, and to improve the prediction of initial droplet size, droplet dispersion and rainout.Phase III of the JIP first included scaled experiments for materials with a range of volatilities (water, cyclohexane, butane, propane and gasoline). These experiments were carried out by Cardiff University including measurements of flow rate and initial droplet size across the full relevant range of superheats. See the companion paper II for further details of these experiments and the derivation of new refined correlations for droplet size distribution and Sauter Mean Diameter. Furthermore large-scale butane experiments were carried out by INERIS (France) to ensure that for more realistic scenarios the derived droplet size correlations are accurate.Model validation and model improvements were carried out by DNV Software, including validation of release rate and initial droplet size against the above scaled and large-scale experiments. New correlations for droplet size distribution and Sauter Mean Diameter (SMD) were implemented into the Phast discharge model. These were compared against a range of other droplet size and rainout correlations published in the literature, in conjunction with validation against an extensive set of experiments. It was shown that the new droplet size correlation agrees better against experimental data than the existing Phast correlation. To further improve the rainout prediction, the Phast dispersion model (UDM) was also extended to allow simultaneous modelling of a range of droplet sizes and distributed rainout (rather than rainout at one point).  相似文献   

3.
This paper describes the results of the first stage of Phase III of a Joint Industry Project (JIP) on liquid jets and two-phase droplet dispersion. This stage included scaled experiments for water, gasoline, and cyclohexane for a range of superheats and nozzles with different aspect ratios. Additional experiments for butane and propane were conducted as a validation exercise and are discussed in the companion paper. Moreover this paper provides recommendations for atomisation correlations in the regimes of mechanical break-up, transition to flashing, and fully flashing. The objectives of this scaled experimental programme are to : (i) provide confidence in the previously proposed modelling methodology (Phase II) across a broad range of initial conditions (ii) update the models’ correlations to generalise further its applicability (iii) recommend further model improvements. Development of new correlations for Sauter Mean Droplet diameter (SMD) and droplet size distribution is based on a best fit of the current scaled experimental data. The new data endorses the previous tri-functional Phase II approach including regimes for mechanical break-up, transition to flashing, and fully flashing, which is hence updated in the new Phase III SMD model. Considerable effort is devoted to capturing the full droplet size range under low-superheat conditions. Also, new enhancements in PDA technology were adopted to enable better quality data under high-superheat conditions. The priority recommendation for further model improvement is better characterisation of the poor quality releases under low-superheat conditions, where this work indicates that extremely broad droplet size distributions are likely. A companion paper (Part I) presents a more general overview of the dispersion problem, implementation of the correlations and subsequent performance against both the current scaled experiments and additional large-scale butane experiments.  相似文献   

4.
Structural failure of an industrial superheated liquid tank or pipe usually results in the flashing jet consisting of a mixture of massive droplets and vapor due to the violent phase transition. In this work, experiments on small-scale releases were carried out with a 20 L storage tank to investigate the droplets behaviors of flashing jets after accidental releases of superheated liquid. Distribution of droplets axial, radial and vertical velocities, as well as droplets diameter along the centreline of flashing jet, were acquired employing a Phase Doppler Anemometry (PDA). The influence of storage pressure, superheat, and nozzle diameter was also studied. Results show that the distribution of actual droplets with different velocities and diameters follows the normal distribution. Droplets mean three-dimensional velocities on the central axis of flashing jet decrease exponentially with the increase of axial distance. The droplets mean diameter first decreases exponentially and finally keeps sable at about 10 μm. Among three-dimensional velocities, the axial velocity is the highest and the vertical velocity is the lowest. Droplets mean three-dimensional velocities increase with the increase of storage pressure, superheat, and nozzle diameter. The droplets mean diameter decreases with the increase of superheat and nozzle diameter but increases with the increase of storage pressure.  相似文献   

5.
为解决我国光学法仪器价格昂贵,操作复杂,在消防领域未能大范围应用的问题。基于撞击法的采样原理,提出新测试方法,并将其应用于消防领域喷雾射流现场测试。在不同的喷孔数量条件下,通过改变喷雾射流出口压力,观察并统计水雾携带的雾滴在载玻片上留下的印记,根据其直径和数量得出雾滴粒径的分布。研究结果表明:喷雾射流雾滴粒径值与平均直径预测模型的预测值和马尔文粒度仪测得的粒径值相近,水雾粒径随着出口压力的增大而减小,研究结果可为喷雾水枪性能测试和优化改造提供技术支持。  相似文献   

6.
Heat transfer fluids tend to form aerosols due to the operating conditions at high pressure when accidental leaking occurs in pipelines or storage vessels, which may cause serious fires and explosions. Due to the physical property complexity of aerosols, it is difficult to define a standard term of “flammability limits” as is possible for gases. The study discussed in this paper primarily focuses on the characterization of ignition conditions and flame development of heat transfer fluid aerosols. The flammable region of a widely-used commercial heat transfer fluid, Paratherm NF (P-NF), was analyzed by electro-spray generation with a laser diffraction particle analysis method. The aerosol ignition behavior depends on the droplet size and concentration of the aerosol. From the adjustment of differently applied electro-spray voltages (7–10 kV) and various liquid feeding rates, a flammable condition distribution was obtained by comparison of droplet size and concentration. An appropriate amount (0.3–1.2 ppm) of smaller droplets (80–110 μm) existing in a given space could result in successful flame formation, while larger droplets (up to 190 μm) have a relatively narrowed range of flammable conditions (0.7–0.9 ppm). It is possible to generate a more useful reference for industry and lab scale consideration when handling liquids. This paper provides initial flammability criteria for analyzing P-NF aerosol fire hazards in terms of droplet size and volumetric concentration, discusses the observation of aerosol combustion processes, and summarizes an ignition delay phenomenon. All of the fundamental study results are to be applied to practical cases with fire hazards analysis, pressurized liquid handling, and mitigation system design once there is a better understanding of aerosols formed by high-flash point materials.  相似文献   

7.
Many release problems involve two-phase releases of hazardous materials of superheated liquids with high energy into the atmosphere. Such accidents are accompanied by violent phase transition and form catastrophic flashing jets. In this work, experimental and theoretical analyses were conducted to investigate dynamic characteristics of flashing jet morphology and their dependence on pressure-decay dynamics under different storage pressures, superheats, and nozzle diameters. Flashing jet morphology and angle throughout two-phase releases were captured by a high-speed camera, and the corresponding source pressure in the superheated liquid tank was measured simultaneously. Results show that three typical phases, expansion, stabilization, and decay, are characterized throughout two-phase release based on the evolution of flashing jet morphology. The jet initially expands gradually due to the enhancement of phase transition intensity, and then keeps stable when the intensity reaches its maximum, and terminally decays rapidly due to the depletion of superheated liquid. Phase transition intensity at the nozzle exit is mainly controlled by the pressure-decay dynamics. Bubbles nucleation inception sites gradually move upstream of the nozzle during the pressure decay process increasing the phase transition intensity. The increase of storage pressure, superheat and nozzle diameter promotes the mechanical and thermodynamic effects on the jet breakup. The significant increase of mechanical and thermodynamic effects effectively accelerates droplets evaporation and further affects flashing jet morphology.  相似文献   

8.
The consequence modelling package Phast examines the progress of a potential incident from the initial release to the far-field dispersion including the modelling of rainout and subsequent vaporisation. The original Phast discharge and dispersion models allow the released substance to occur only in the vapour and liquid phases. The latest versions of Phast include extended models which also allow for the occurrence of fluid to solid transition for carbon dioxide (CO2) releases.As part of two projects funded by BP and Shell (made publicly available via CO2PIPETRANS JIP), experimental work on CO2 releases was carried out at the Spadeadam site (UK) by GL Noble Denton. These experiments included both high-pressure steady-state and time-varying cold releases (liquid storage) and high-pressure time-varying supercritical hot releases (vapour storage). The CO2 was stored in a vessel with attached pipework. At the end of the pipework a nozzle was attached, where the nozzle diameter was varied.This paper discusses the validation of Phast against the above experiments. The flow rate was predicted accurately by the Phast discharge models (within 10%; considered within the accuracy at which the BP experimental data were measured), and the concentrations were found to be predicted accurately (well within a factor of two) by the Phast dispersion model (UDM). This validation was carried out with no fitting whatsoever of the Phast extended discharge and dispersion models.  相似文献   

9.
为提高热轧工作区的雾化降尘效率,研究尘雾颗粒碰撞相关理论,以热轧产生的氧化铁皮粉尘为研究对象,建立基于雾滴粒径、雾滴速度和液体流量多个雾化参数的降尘效率计算模型;分析单一雾化参数对降尘效率的影响;通过实验,测得不同气液压力组合下的雾化参数,运用响应曲面法,分析多个雾化参数耦合对降尘效率的影响。结果表明:降尘效率随着雾滴粒径的减小、液体流量增大而提高,雾滴速度对其影响不明显;多因素耦合时,通过调节气液压力组合来控制降尘效率,结合高温环境对雾滴存活时间的影响分析,当气压0.3 MPa、液压0.5 MPa时,粒径为21~27 μm的粉尘沉降效果最佳,降尘效率达到90%以上,可有效解决热轧车间粉尘污染问题。  相似文献   

10.
Droplet size distribution inside water flashing jets and corresponding rain-out fraction were measured. Mass distribution showed that a few droplets are ‘large’ (d>150 μm) and count for more than 85% of the liquid mass in the jet because of their large individual mass. This could be due to incomplete thermal fragmentation. It could explain the rain-out falling near the orifice or pipe exit.  相似文献   

11.
为研究磁化水除尘的最佳磁化条件,提高水的利用率,通过实验得出不同磁化条件下水的表面张力、黏度;然后采用ANSYS Fluent进行数值模拟得出磁化水降尘性能最佳时的喷雾压力和磁化条件。研究结果表明:当喷射压力为5 MPa时未磁化水的喷雾浓度较大、粒径较小;在此压力下,磁场强度为150 mT、磁化时间为80 s时,磁化水雾滴平均粒径减少39.6%,最大粒径减少16.4%,雾滴粒径小且分布较均匀,降尘性能显著提高。研究结果可为矿井下缓解粉尘污染问题提供理论指导。  相似文献   

12.
This paper discusses the modelling of the discharge and subsequent atmospheric dispersion for carbon dioxide releases using extensions of models in the consequence modelling package Phast. Phast examines the progress of a potential incident from the initial release to the far-field dispersion including the modelling of rainout and subsequent vaporisation. The original Phast discharge and dispersion models allow the released chemical to occur only in the vapour and liquid phases. As part of the current work these models have been extended to also allow for the occurrence of liquid to solid transition or vapour to solid transition. This applies both for the post-expansion state in the discharge model, as well as for the thermodynamic calculations by the dispersion model. Solid property calculations have been added where necessary. The above extensions are generally valid for fluid releases including CO2. Using the extended dispersion formulation, a sensitivity study has been carried out for mixing of solid CO2 with air, and it is demonstrated that solid effects may significantly affect the predicted concentrations.  相似文献   

13.
喷雾过程中液滴不稳定破碎的研究   总被引:3,自引:1,他引:3  
建立喷雾过程数值计算模型,将喷注分为液核区与气液混合区,分别用K-H(Kelvin-Helmholtz)和R-T(Rayleigh-Taylor)不稳定性理论来描述液滴的破碎过程,用不稳定性理论中的波长来表示破碎后的液滴半径,建立液滴破碎数学模型,并对一典型燃烧装置中的喷雾过程进行三维数值模拟,获得了液滴运动轨迹的三视图及典型截面上液体蒸汽浓度场等势线图。  相似文献   

14.
为掌握超音速虹吸式空气雾化喷嘴雾化机理及特性,采用流体力学线性不稳定理论分析雾化机理,通过喷雾实验研究不同因素对雾化性能的影响及对比不同类型喷嘴的雾化效果。研究结果表明:随着距喷嘴出口距离增加,超音速虹吸式空气雾化喷嘴在雾滴破碎后碰撞聚合作用由强到弱,300 mm内雾滴粒径增长速率明显,300 mm外雾滴粒径增长速率较缓。随着供气压力增加,超音速虹吸式空气雾化喷嘴雾滴粒径逐渐减小,在实测距离内SMD(平均粒径)最小为17.5μm。不同供气压力下,超音速虹吸式空气雾化喷嘴随距离增加,雾滴粒径增长趋势基本一致。有效射程内供气压力为0.1~0.5 MPa时,SMD仅为17.5~31.16μm。对比实验中,超音速虹吸式空气雾化喷嘴SMD比内混式空气雾化喷嘴和X旋流型压力喷嘴小53.5%~74.0%。  相似文献   

15.
Many process plant installations include cylindrical vessels which contain high temperature liquids with the remaining space above occupied by vapour or a vapour/gas mixture. If such a pressure vessel were to be ruptured, missiles (i.e. fragments) may be generated and equipment in the vicinity put at risk. There is a particular threat from large missiles. Theoretical models have been developed to describe the peak velocity achieved by end-caps and `rocket' missiles generated by the circumferential failure of a vessel. The end-cap missile model assumes that the action of the escaping vapour/liquid on the end-cap is analogous to a missile driven by a gas jet from a constant pressure source. The `rocket' missile velocities are derived via a simple approximation to the impulse applied to the internal face of the closed end of the `rocket'. Experiments have confirmed the validity of these approaches and upper limit values to end-cap and `rocket' velocities have been defined.  相似文献   

16.
Although the hazards of aerosol fires and explosions have been studied for decades the data for aerosol flame propagation is still scarce. Additionally there is a lack of standard techniques and measurement apparatus, which impedes the development of optimal aerosol hazard mitigation measures. The focus of this study is development of an improved aerosol electrospray device for the generation of high quality aerosol data. The goal is achieved through higher nozzle packing, precise nozzle and mesh hole alignment and adding two ground meshes. In addition to a flat ground mesh, the utilization of a cylindrical ground mesh demonstrated improved confinement and guidance of droplets. Duratherm 600, heat transfer fluid, was examined to demonstrate the modified electrospray device capabilities as compared to previous design. Results show the modified electrospray can produce more uniform droplets, more even test chamber dispersion, smaller droplet size and higher concentration aerosol, which is essential to study aerosol flame propagation. Accordingly, the results of aerosol flame speed tests for the improved design were more reproducible. Moreover, it was found that a traditional propane pilot flame was unable to ignite the smaller aerosol droplet size due to the strong turbulence generated by the open flame. However, by careful modification of the pilot flame length, the turbulence decreased dramatically and the small droplet size aerosol can be tested.  相似文献   

17.
以大涡模拟、混合物分数模拟和欧拉-拉格朗日粒子运动描述法为基础,采用火灾动力学软件FDS研究了细水雾对障碍物不同程度遮挡火的抑制作用,通过改变雾滴粒径、喷头操作压力来分析细水雾对不同遮挡情况油池火的抑制灭火作用。结果表明:当火源被障碍物完全遮挡时,操作压力低于1MPa,细水雾很难达到抑制作用,当压力达到4MPa以上时,细水雾能够将温度控制在较低范围内;细水雾粒径小于50μm时,细水雾对障碍物遮挡火有较好的抑制作用;从整体来看,随着细水雾粒径的减小、压力的升高,细水雾对障碍物遮挡火的抑制作用逐渐增强。  相似文献   

18.
本文详细介绍了喷淋液滴的一些动力学参数:(1)液滴动量喷淋的最大动量和体积流量与流量系数有关.水流碰到溅水盘和盘臂后,动量减少,其动量减少量约63%.(2)液滴粒径分布当液滴直径小于平均体积直径DV50时,分布符合log-normal分布,当液滴直径大于DV50时,分布符合Rosin-Rammler分布.(3)水流量分布对不同的喷头,其水量分布是不同的.有的喷头水流量沿径向逐渐降低,有的喷头中心地带流量最高.(4)液滴路径分析液滴越大,自由沉降速度越大,水平通过的距离越大.最后对喷头的进一步发展进行展望.  相似文献   

19.
In the present study, the hazard range of the natural gas (NG) jet released from a high-pressure pipeline was investigated. A one-dimensional integral model was combined with a release model to calculate the length and width (i.e., size), and the shape of NG jet release. The physical parameters affecting the jet release of NG were categorized into three types: source release, environmental and time parameters. The effects of each type of parameters on the gas jet release rate, size and shape were evaluated systematically. The results show that all of these parameters have important influence on the hazard range of NG jet release. The source release parameters, including the pipeline length, the operation pressure of the pipeline, the release hole diameter and the pipe diameter, dominate the gas release rate through a hole and therefore the length and width of gas jet release. The gas jet release rate and size are found to be highly correlative with these parameters in terms of power curve regression analysis. The environmental parameters including the atmospheric stability, the ambient wind speed and the source height, have no influence on the gas jet release rate but have influence on the hazard range of gas jet by the turbulent mixing and dilution of NG with air. The time parameters including the concentration averaged time and the valve closing time which are related to the unsteady state jet release of NG, also show the influence on the hazard range of gas jet release. The results show that the decreasing valve closing time and increasing gas concentration averaged time are in favor of reducing the length and width of gas jet release. In addition, these computational parametric studies indicate that the parameters of source release and time have no significant influence on the shape of gas jet release (i.e., jet length/width ratio, LWR) which can maintain the values between 7 and 8. However, the environmental parameters have influence on the shape of gas jet release. These comprehensive investigations provide useful database of evaluating the hazard range for NG jet released from a hole on a high-pressure pipeline and also provide the foundation of decision-making for further fire and/or explosion evaluation and people evacuation.  相似文献   

20.
细水雾与射流卷吸现象的模拟实验研究   总被引:5,自引:3,他引:2  
本文利用三维激光多普勒测速计和自适性相位多普勒速度计系统(三维LDV/APV系统),通过观察和测量细水雾被射流卷吸的现象,荻取了细水雾的平均速度、平均粒径和雾通量等特性参数,深化认识细水雾被射流卷吸的机理,为下一步进行细水雾被火焰卷吸现象的实验研究打下了良好的基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号