首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hybrid mixture of combustible dusts and flammable gases/vapours widely exist in various industries, including mining, petrochemical, metallurgical, textile and pharmaceutical. It may pose a higher explosion risk than gas/vapor or dust/mist explosions since the hybrid explosions can still be initiated even though both the gas and the dust concentration are lower than their lower explosion limit (LEL) values. Understanding the explosion threat of hybrid mixtures not only contributes to the inherent safety and sustainability of industrial process design, but promotes the efficiency of loss prevention and mitigation. To date, however, there is no test standard with reliable explosion criteria available to determine the safety parameters of all types of hybrid mixture explosions, nor the flame propagation and quenching mechanism or theoretical explanation behind these parameters. This review presents a state-of-the-art overview of the comprehensive understanding of hybrid mixture explosions mainly in an experimental study level; thereby, the main limitations and challenges to be faced are explored. The discussed main contents include the experimental measurement for the safety parameters of hybrid mixtures (i.e., explosion sensitivity and severity parameters) via typical test apparatuses, explosion regime and criterion of hybrid mixtures, the detailed flame propagation/quenching characteristics behind the explosion severities/sensitivities of hybrid mixtures. This work aims to summarize the essential basics of experimental studies, and to provide the perspectives based on the current research gaps to understand the explosion hazards of hybrid mixtures in-depth.  相似文献   

2.
Ignition of natural gas (composed primarily of methane) is generally not considered to pose explosion hazards when in unconfined and low- or medium-congested areas, as most of the areas within LNG regasification facilities can typically be classified. However, as the degrees of confinement and/or congestion increase, the potential exists for the ignition of a methane cloud to result in damaging overpressures (as demonstrated by the recurring residential explosions due to natural gas leaks). Therefore, it is prudent to examine a proposed facility’s design to identify areas where vapor cloud explosions (VCEs) may cause damage, particularly if the damage may extend off site.An area of potential interest for VCEs is the dock, while an LNG carrier is being offloaded: the vessel hull provides one degree of confinement and the shoreline may provide another; some degree of congestion is provided by the dock and associated equipment.In this paper, the computational fluid dynamics (CFD) software FLACS is used to evaluate the consequences of the ignition of a flammable vapor cloud from an LNG spill during the LNG carrier offloading process. The simulations will demonstrate different approaches that can be taken to evaluate a vapor cloud explosion scenario in a partially confined and partially congested geometry.  相似文献   

3.
Explosion experiments using premixed gas in a duct have become a significant method of investigating methane-air explosions in underground coal mines. The duct sizes are far less than that of an actual mine gallery. Whether the experimental results in a duct are applicable to analyze a methane-air explosion in a practical mine gallery needed to be investigated. This issue involves the effects of scale on a gas explosion and its shockwave in a constrained space. The commercial software package AutoReaGas, a finite element computational fluid dynamics (CFD) code suitable for gas explosions and blast problems, was used to carry out the numerical simulation for the explosion processes of a methane-air mixture in the gallery (or duct) at various scales. Based on the numerical simulation and its analysis, the effect of scale on the degree of correlation with the real situation was studied for a methane-air explosion and its shockwave in a square section gallery (or duct). This study shows that the explosion process of the methane-air mixture relates to the scales of the gallery or duct. The effect of scale decreases gradually with the distance from the space containing the methane-air mixture and the air shock wave propagation conforms approximately to the geometric similarity law in the far field where the scaled distance (ratio of the propagation distance and the height (or width) of the gallery section) is over 80.  相似文献   

4.
A study on the obstacle-induced variation of the gas explosion characteristics   总被引:13,自引:0,他引:13  
A study on the variation of the gas explosion characteristics caused by the built-in obstacles was conducted in enclosed/vented gas explosion vessels. It has been well known that the obstacles in pipes and long ducts would accelerate the flame propagation, and cause the transition from deflagration to detonation. In this study, the explosion characteristics and the flame behavior of vented explosions and constant-volume explosions were investigated. Experiments were carried out in a 270-liter and 36-liter hexahedron vessels filled with LPG–air mixture. The explosion characteristics of the gas mixture were determined by using a strain-responding pressure transducer. The flame behavior was recorded by using a high-speed video camera. The shape and the size of the obstacle, and the gas concentration, were adjusted in the experiments.

It can be seen from the experimental results that, instead of being accelerated, the flame propagation inside the explosion vessel is decelerated by the plate obstacles fixed at the bottom of the vessel. Also, the characteristics of the enclosed explosion are not so affected by the built-in obstacles as those of the vented explosion are. It is believed that the eddy-induced turbulence behind the obstacle decelerates the flame propagation.  相似文献   


5.
Dust Explosion Simulation Code (DESC) was a project supported by the European Commission under the Fifth Framework Programme. The main purpose of the project was to develop a simulation tool based on computational fluid dynamics (CFD) that could predict the potential consequences of industrial dust explosions in complex geometries. Partners in the DESC consortium performed experimental work on a wide range of topics related to dust explosions, including dust lifting by flow or shock waves, flame propagation in vertical pipes, dispersion-induced turbulence and flame propagation in closed vessels, dust explosions in closed and vented interconnected vessel systems, and measurements in real process plants. The new CFD code DESC is based on the existing CFD code FLame ACceleration Simulator (FLACS) for gas explosions. The modelling approach adopted in the first version entails the extraction of combustion parameters from pressure–time histories measured in standardized 20-l explosion vessels. The present paper summarizes the main experimental results obtained during the DESC project, with a view to their relevance regarding dust explosion modelling, and describes the modelling of flow and combustion in the first version of the DESC code. Capabilities and limitations of the code are discussed, both in light of its ability to reproduce experimental results, and as a practical tool in the field of dust explosion safety.  相似文献   

6.
Empirical correlations are often used to estimate safety distances in the event of dust explosions. In Europe, there are two main correlations available in VDI 3673 and EN 14491. Whereas the VDI 3673 correlation is based on experimental investigations of vented dust explosions using large vessels, and assumes an external explosion, the EN 14491 correlation is derived from SKJELTORP et al. internal explosion tests in ammunition storage facility. This paper provides an overview of the experimental studies of vented gas and dust explosion. It aims to highlight the main findings of such studies, while defining the conditions for a secondary explosion to occur and comparing experimental data with the application of standards, in order to propose elements to choose the more appropriate correlation.  相似文献   

7.
For reasonable explanation about recent accidental gas explosions caused by condensed phase combustibles occurred in Japan, the processes of such gas explosions have been investigated. When the combustible is of condensed phase at its initial state, gasification is necessary to form a flammable mixture causing a gas explosion. The process of gasification characterizes such a gas explosion. When the combustible is RDF (refuse derived fuel), the temperature was inferred to spontaneously increase. Also, the flammable gas should be generated within a confined high temperature region in the pile and come through a low temperature layer without combustion. The growth of a flammable layer after gasoline is spread over floor is analytically evaluated. The flame propagation through the flammable layer established over the floor enhances the pressure enough to break the structure of the office. Long-term heating is inferred to cause ignition of dried garbage, and the mechanism of flammable gas generation would be similar to that in the case of the RDF explosion. For prevention of losses at accidental explosions caused by gasification of condensed phase combustibles, understanding of the phenomena is the most important.  相似文献   

8.
Utility-scale lithium-ion energy storage batteries are being installed at an accelerating rate in many parts of the world. Some of these batteries have experienced troubling fires and explosions. There have been two types of explosions; flammable gas explosions due to gases generated in battery thermal runaways, and electrical arc explosions leading to structural failure of battery electrical enclosures. The thermal runaway gas explosion scenarios, which can be initiated by various electrical faults, can be either prompt ignitions soon after a large flammable gas mixture is formed, or delayed ignitions associated with late entry of air and/or loss of gaseous fire suppression agent. The electrical explosions have entailed inadequate electrical protection to prevent high energy arcs within electrical boxes vulnerable to arc induced high pressures and thermal loads. Estimates of both deflagration pressures and arc explosion pressures are described along with their incident implications.  相似文献   

9.
A completely adiabatic pipe that is similar to a coal-mine coal or rock roadway was simulated using the computational software AutoReaGas. A partially adiabatic pipe was established using an experimental steel pipe with heat-insulating material installed in the inner wall, and a non-adiabatic pipe was also established using the experimental steel pipe without the heat-insulating material. Premixed methane/air deflagrations were studied in the three types of pipe to reveal the influence of the condition of the pipe wall on gas explosions. The results showed that in the completely adiabatic pipe, the maximum explosion overpressure was dynamic and decreased and increased with increasing distance; however, the flame-propagation speed increased gradually. In the partially adiabatic pipe and the non-adiabatic pipe, the maximum explosion overpressure and flame-propagation speed increased initially and then gradually decreased with increasing distance. The majority of explosion overpressure and flame-propagation speed values at each gauge in the completely adiabatic pipe were larger than those of the partially adiabatic pipe. Both measurements at each gauge in the partially adiabatic pipe were much greater than those of the non-adiabatic pipe. The condition of the pipe wall has a large influence on the maximum explosion overpressure and the flame-propagation speed. In future explosion experiments, heat insulating materials should be installed in the inner wall of steel pipes to obtain data for application to the prevention and control of gas explosions in underground coal mines.  相似文献   

10.
The interaction of unburnt gas flow induced in an explosion with an obstacle results in the production of turbulence downstream of the obstacle and the acceleration of the flame when it reaches this turbulence. Currently, there are inadequate experimental measurements of these turbulent flows in gas explosions due to transient nature of explosion flows and the connected harsh conditions. Hence, majority of measurements of turbulent properties downstream of obstacles are done using steady-state flows rather than transient flows. Consequently, an empirical based correlation to predict distance to maximum intensity of turbulence downstream of an obstacle in an explosion-induced flow using the available steady state experiments was developed in this study. The correlation would serve as a prerequisite for determining an optimum spacing between obstacles thereby determining worst case gas explosions overpressure and flame speeds. Using a limited experimental work on systematic study of obstacle spacing, the correlation was validated against 13 different test conditions. A ratio of the optimum spacing from the experiment, xexp to the predicted optimum spacing, xpred for all the tests was between 2-4. This shows that a factor of three higher than the xpred would be required to produce optimum obstacle spacing that will lead to maximum explosion severity. In planning the layout of new installations, it is appropriate to identify the relevant worst case obstacle separation in order to avoid it. In assessing the risk to existing installations and taking appropriate mitigation measures it is important to evaluate such risk on the basis of a clear understanding of the effects of separation distance and congestion. It is therefore suggested that the various new correlations obtained from this work be subjected to further rigorous validation from relevant experimental data prior to been applied as design tools.  相似文献   

11.
针对瓦斯爆炸事故在矿井开采中的危害及防治,从爆炸发展规律和爆炸防治两大方面对国内外瓦斯爆炸研究状况进行了综合评述.国内外学者通过理论法、实验法、数值模拟法对瓦斯爆炸进行研究,瓦斯爆炸发展规律方面的研究涉及到瓦斯爆炸的机理、瓦斯组分及浓度对爆炸发展规律的影响、爆炸发生的条件及危害、爆炸过程中的燃烧阶段变化及流体流动状态变...  相似文献   

12.
Hybrid mixtures are widely encountered in industries such as coal mines, paint factories, pharmaceutical industries, or grain elevators. Hybrid mixtures explosions involving dust and gas can cause great loss of lives and properties. The lower flammability limit (LFL) is a critical parameter when conducting a hazard assessment or developing mitigation methods for processes involving hybrid mixtures. Unlike unitary dust or gas explosions, which have been widely studied in past decades, only minimal research focuses on hybrid mixtures, and data concerning hybrid mixtures can rarely be found. Although methods to predict the LFL have been developed by using either Le Chatelier's Law, which was initially proposed for homogeneous gas mixtures, or the Bartknecht curve, which was adopted for only certain hybrid mixtures, significant deviations still remain. A more accurate correlation to predict an LFL for a hybrid mixtures explosion is necessary for risk assessment. This work focuses on the study of hybrid mixtures explosions in a 36 L dust explosion apparatus including mixtures of methane/niacin, methane/cornstarch, ethane/niacin and ethylene/niacin in air. By utilizing basic characteristics of unitary dust or gas explosions, a new formula is proposed to improve the prediction of the LFL of the mixture. The new formula is consistent with Le Chatelier's Law.  相似文献   

13.
This study investigates dust explosions in vessel-pipe systems to develop a better understanding of dust flame propagation between interconnected vessels and implications for the proper application of explosion isolation systems. Cornstarch dust explosions were conducted in a large-scale setup consisting of a vented 8-m3 vessel and an attached pipe with a diameter of 0.4 m and a length of 9.8 m. The ignition location and effective dust reactivity were varied between experiments. The experimental results are compared against previous experiments with initially quiescent propane-air mixtures, demonstrating a significantly higher reactivity of the dust explosions due to elevated initial turbulence, leading to higher peak pressures and faster flame propagation. In addition, a physics-based model developed previously to predict gas explosion dynamics in vessel-pipe systems was extended for dust combustion. The model successfully predicts the pressure transients and flame progress recorded in the experiments and captures the effects of ignition location and effective dust reactivity.  相似文献   

14.
The ability of the CFD code AutoReaGas to simulate a gas explosion in two linked vessels was investigated. These explosions present an anomalous destructive power because both peak pressures and rates of pressure rise are much higher than those generated in single vessel explosions. A fair agreement was observed between the computed results and experimental data taken from literature. Moreover, the computed values of the turbulence intensity at varying diameters of the connecting pipe demonstrate that turbulence induced in both vessels represent a major factor affecting the explosion violence.  相似文献   

15.
Devastating vapour cloud explosions can only develop under appropriate (boundary) conditions. The record of vapour cloud explosion incidents from the past demonstrates that these conditions are readily met by the congestion by process equipment at (petro-) chemical plant sites. Therefore, the possibility of an accidental release of a flammable and a subsequent vapour cloud explosion is a major hazardous scenario considered in any risk assessment with regard to the process industries.If an extended flammable vapour cloud at a chemical plant site extends over more than one process unit, which are separated by lanes of sufficient width, the vapour cloud explosion on ignition develops the same number of separate blasts. If, on the other hand, the separation between the units is insufficient, the vapour cloud explosion develops one big blast. The critical separation distance (SD) is the criterion that allows discriminating in this matter for blast modelling purposes.This paper summarises some major results of an experimental research programme with the objective to develop practical guidelines with regard to the critical SD. To this end, a series of small-scale explosion experiments have been performed with vapour clouds containing two separate configurations of obstacles. Blast overpressures at various stations around have been recorded while the SD between the two configurations of obstacles was varied.The experimental programme resulted in some clear indications for the extent of the critical SD between separate areas of congestion. On the basis of safety and conservatism, these indications have been rendered into a concrete guideline. Application of this guideline would allow a greater accuracy in the modelling of blast from vapour cloud explosions.  相似文献   

16.
煤矿主要采用隔爆水棚或岩粉棚来抑制瓦斯爆炸火焰传播,但此类技术仅针对一次性瓦斯爆炸,而缺乏对多次及连续瓦斯爆炸的有效阻隔爆手段。仅注重对燃烧波的淬熄作用,对造成很大破坏的冲击波的衰减效果不足。多孔介质的淬熄火焰和衰减冲击波的效能已得到国内外专家的重视,实验研究了多层丝网和多孔材料如泡沫铝和泡沫陶瓷的阻隔爆效果。泡沫陶瓷作为一种多孔介质,具有开孔率大、耐高温、抗冲击力强的优点。理论分析和实验研究表明,由于壁面的多次撞击效应,多孔介质可以有效地销毁瓦斯燃烧化学反应产生的自由基数量,抑制化学反应的放热,使化学反应不能自持进行,进而淬熄燃烧火焰传播;可以大幅衰减瓦斯爆炸的冲击波强度,起到同时淬熄燃烧火焰和衰减冲击波的作用。多孔介质有望成为煤矿井下一种新型的瓦斯爆炸阻隔爆材料和方法。  相似文献   

17.
In underground coal mining, methane explosions often can cause tremendous disasters. In the meantime, carbon monoxide (CO), generated during the process of coal oxidation, may appear in the air. Therefore, the explosion characteristics of the mixture of CH4 and CO must be investigated to prevent gas explosion accidents in coal mines. We conducted experiments by using a 20-L nearly spherical gas explosion testing device. The software FLACS was used to simulate the explosion of the mixture of CH4 and CO at various mixing concentrations, and the simulation results corresponded to experimental results. With the increase of CO concentration, both upper and lower explosive limits of CH4 decreased. On the whole, the explosion characteristic parameters of CH4 and the mixture are similar. When CH4 concentration was below the stoichiometric concentration, the addition of CO could promote the intensity of gas explosion; oppositely, excessive CO would inhibit the gas explosion reaction. The inhibitory effects become more significant as the concentration of CH4 increases.  相似文献   

18.
Highly destructive combustible dust explosions, which is prone to cause secondary explosion, has been a concern in industrial processes. To understand the current development and status of research on dust explosions, 1276 publications related to dust explosions from 1998 to 2021 were indexed through the Web of Science Core Collection database. CiteSpace and VOSviewer were used to visualize and analyze the collected literature information. The number of articles related to dust explosions has increased from 12 in 1998 to 191 in 2021. China, the United States, and Canada are the major contributors in this field. Dalhousie University, Beijing Institute of Technology, and Dalian University of Technology are at the core of dust explosion research. Wei Gao, Paul Amyotte, and Chi-Min Shu are the most prolific researchers. Journal of Loss Prevention in the Process Industries, Powder Technology, and Process Safety and Environmental Protection are the major sources of publications related to dust explosions. The research topic of dust explosions mainly evolves into four aspects: explosion characteristics and influencing factors, research media, explosion suppression, and numerical simulation. New research hotspots have appeared related to gas–dust hybrid mixtures, nanomaterials, and powder suppressants. The results can help researchers in the dust explosion field to quickly determine the research frontier and the overall situation.  相似文献   

19.
The hazards of dust explosions prevailing in plants are dependent on a large variety of factors that include process parameters, such as pressure, temperature and flow characteristics, as well as equipment properties, such as geometry layout, the presence of moving elements, dust explosion characteristics and mitigating measures. A good dust explosion risk assessment is a thorough method involving the identification of all hazards, their probability of occurrence and the severity of potential consequences. The consequences of dust explosions are described as consequences for personnel and equipment, taking into account consequences of both primary and secondary events.While certain standards cover all the basic elements of explosion prevention and protection, systematic risk assessments and area classifications are obligatory in Europe, as required by EU ATEX and Seveso II directives. In the United States, NFPA 654 requires that the design of the fire and explosion safety provisions shall be based on a process hazard analysis of the facility, process, and the associated fire or explosion hazards. In this paper, we will demonstrate how applying such techniques as SCRAM (short-cut risk analysis method) can help identify potentially hazardous conditions and provide valuable assistance in reducing high-risk areas. The likelihood of a dust explosion is based on the ignition probability and the probability of flammable dust clouds arising. While all possible ignition sources are reviewed, the most important ones include open flames, mechanical sparks, hot surfaces, electric equipment, smoldering combustion (self-ignition) and electrostatic sparks and discharges. The probability of dust clouds arising is closely related to both process and dust dispersion properties.Factors determining the consequences of dust explosions include how frequently personnel are present, the equipment strength, implemented consequence-reducing measures and housekeeping, as risk assessment techniques demonstrate the importance of good housekeeping especially due to the enormous consequences of secondary dust explosions (despite their relatively low probability). The ignitibility and explosibility of the potential dust clouds also play a crucial role in determining the overall risk.Classes describe both the likelihood of dust explosions and their consequences, ranging from low probabilities and limited local damage, to high probability of occurrence and catastrophic damage. Acceptance criteria are determined based on the likelihood and consequence of the events. The risk assessment techniques also allow for choosing adequate risk reducing measures: both preventive and protective. Techniques for mitigating identified explosions risks include the following: bursting disks and quenching tubes, explosion suppression systems, explosion isolating systems, inerting techniques and temperature control. Advanced CFD tools (DESC) can be used to not only assess dust explosion hazards, but also provide valuable insight into protective measures, including suppression and venting.  相似文献   

20.
This paper describes an experimental investigation of turbulent flame propagation in propane-air mixtures, and in mechanical suspensions of maize starch dispersed in air, in a closed vessel of length 3.6 m and internal cross-section 0.27 m × 0.27 m. The primary motivation for the work is to gain improved understanding of turbulent flame propagation in dust clouds, with a view to develop improved models and methods for assessing explosion risks in the process and mining industries. The study includes computational fluid dynamics (CFD) simulations with FLACS and DESC, for gas and dust explosions respectively. For initially quiescent propane-air mixtures, FLACS over-predicts the rate of combustion for fuel-lean mixtures, and under-predicts for fuel-rich mixtures. The simulations tend to be in better agreement with the experimental results for initially turbulent gaseous mixtures. The experimental results for maize starch vary significantly between repeated tests, but the subset of tests that yields the highest explosion pressures are in reasonable agreement with CFD simulations with DESC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号