首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
针对预混火焰在狭窄通道中传播过程的研究是进行阻隔防爆技术研发的基础。本文首先通过数值计算模拟了预混乙炔一空气爆燃火焰在狭窄通道中的传播与熄灭过程,然后采用高速数字摄像技术对火焰的传播过程进行捕捉,分析临界火焰传播速度、狭缝高度和熄灭长度之间的关系。研究结果均表明,当狭缝高度一定时,临界火焰传播速度越大,熄灭长度越大,熄灭长度与临界火焰传播速度近似呈正比例关系。在相同的临界火焰传播速度条件下,随着狭缝高度的增加,熄灭长度值迅速增大,说明狭缝高度对预混火焰的传播与熄灭有显著影响。本文研究成果将可为工业阻火防爆装置的设计和实际应用提供参考依据。  相似文献   

2.
通过对预混乙炔-空气爆燃火焰在平板狭缝中的传播与熄灭过程进行试验研究,分析临界火焰传播速度、狭缝高度和熄灭长度之间的关系。实验结果表明,当狭缝高度一定时,临界火焰传播速度越大,熄灭长度越大,熄灭长度与临界火焰传播速度近似呈正比例关系。在相同的临界火焰传播速度条件下,随着狭缝高度的增加,熄灭长度值迅速增大,说明狭缝高度对预混火焰的传播与熄灭有显著影响。  相似文献   

3.
In this research combustion of iron dust particles in a medium with spatially discrete sources distributed in a random way has been studied using a numerical approach. A new thermal model is generated to estimate flame propagation speed and quenching distance in a quiescent reaction medium. The flame propagation speed is studied as a function of iron dust concentration and particle diameter. The predicted propagation speeds as a function of these parameters are shown to agree well with experimental measurements. In addition, the minimum ignition energy has also been investigated as a function of equivalence ratio and particle diameter. The quenching distance has been studied as a function of particle diameter and validated by the experiment. Considering random distribution of particles, the obtained results provide more realistic and reasonable predictions of the combustion physics compared to the results of the uniform distribution of particles.  相似文献   

4.
With high-speed camera technology, the propagation behavior of explosion flame for the local dust cloud of corn starch in a semi-open vertical pipe under the action of the annular obstacle was studied experimentally, and the blockage rate and the annular obstacle numbers as well as impact of dust cloud concentration on the flame propagation were investigated. The researches showed that both the blockage rate and the annular obstacle numbers have significant effects on the flame speed and propagation process for the dust cloud explosion of corn starch. The increase of the blockage rate of such annular obstacles will cause that the combustion of dust cloud with high concentration is mainly concentrated in the lower part of the pipe. The increase of the annular obstacle numbers will lead to the acceleration of combustion of the dust cloud. With the increase of the blockage rate and the annular obstacle numbers, the maximum flame speed shows a trend of the first increasing and then decreasing, and the phenomenon of accelerated propagation of the flame becomes more and more obvious, however, the distance of continuous acceleration for the flame is gradually decreased and the maximum flame speed is farther from the outlet of the pipe. Under the action of such annular obstacles, the concentration of dust cloud has a significant effect on the flame speed and shape of the dust cloud of the corn starch. The increase of the concentration of the dust cloud will decrease the acceleration effect of such annular obstacles to result in maximum flame speed showing a trend of the first increasing and then decreasing. However, the acceleration distance of the flame is longer, and the maximum flame speed is closer to the outlet of the pipe. The increasing concentration will make the flame speed develop more slowly, the flame color will be darker, and the flame segmentation phenomenon will be more obvious.  相似文献   

5.
Experiments using an open space dust explosion apparatus and a standard 20 L explosion apparatus on nano and micron polymethyl methacrylate dust explosions were conducted to reveal the differences in flame and pressure evolutions. Then the effect of combustion and flame propagation regimes on the explosion overpressure characteristics was discussed. The results showed that the flame propagation behavior, flame temperature distribution and ion current distribution all demonstrated the different flame structures for nano and micron dust explosions. The combustion and flame propagation of 100 nm and 30 μm PMMA dust clouds were mainly controlled by the heat transfer efficiency between the particles and external heat sources. Compared with the cluster diffusion dominant combustion of 30 μm dust flame, the premixed-gas dominant combustion of 100 nm dust flame determined a quicker pyrolysis and combustion reaction rate, a faster flame propagation velocity, a stronger combustion reaction intensity, a quicker heat release rate and a higher amount of released reaction heat, which resulted in an earlier pressure rise, a larger maximum overpressure and a higher explosion hazard class. The complex combustion and propagation regime of agglomerated particles strongly influenced the nano flame propagation and explosion pressure evolution characteristics, and limited the maximum overpressure.  相似文献   

6.
This study investigates the impact of radiation heat transfer and heat conduction on dust cloud combustion. Radiation plays a very important role in the stability of dust cloud flame, and increasing the amount of radiation drastically raises the possibility of instability and explosion in a dust cloud mixture. Flame speed, which is a function of mixture characteristics, can exhibit a fluctuating behavior. By using the discrete heat source method, it would be possible to study the transient propagation of dust flames. Thus, the propagation speed of flame can be obtained, and as time goes by, the transient speed of dust flame will reach its steady state value. By considering the radiation effect, better agreement is observed between the obtained results and experimental data.  相似文献   

7.
The majority of experimental tests done on combustible dusts are performed in constant volume vessels that have limited or no optical access. Over the years, McGill University has been developing alternative experimental techniques based on direct observation of dust flames, yielding reliable fundamental parameters such as flame burning velocity, temperature and structure. The present work describes two new experimental set-ups allowing direct observation of isobaric and freely propagating dust flames at two sufficiently different scales to test the influence of scale on dust flame phenomena. In the laboratory-scale experiments, a few grams of aluminum powder are dispersed in transparent, 30 cm diameter latex balloons that allow for full visualization of the spherical flame propagation. In the field experiments, about 1 kg of aluminum powder is dispersed by a short pulse of air, forming a conical dust cloud with a total volume of about 5 m3. High-speed digital imaging is used to record the particle dispersal and flame propagation in both configurations. In the small-scale laboratory tests, the measured flame speed is found to be about 2.0 ± 0.2 m/s in fuel-rich aluminium clouds. The burning velocity, calculated by dividing the measured flame speed by the expansion factor deduced from thermodynamic equilibrium calculations, correlates well with the previously measured burning velocity of about 22–24 cm/s from Bunsen dust flames. Flame speeds observed in field experiments with large-scale clouds, however, are found to be much higher, in the range of 12 ± 2 m/s. Estimations are presented that show that the presumably greater role of radiative heat transfer in larger-scale aluminium flames is insufficient to explain the six-fold increase in flame speed. The role of residual large-eddy turbulence, as well as the frozen-turbulence effect leading to large-scale dust concentration fluctuations that cause flame folding, are discussed as two possible sources for the greater flame speed.  相似文献   

8.
This article reports experimental investigation of deflagration flame quenching behavior by porous media. In this study, a semi-vented deflagration chamber with a porous media plate was constructed, taking account of effects of obstacles and porous media materials on the flame quenching process. A high speed video camera was used to image the process and behavior of flame propagation, meanwhile, the gas-phase temperatures and ion currents, upstream, within, and downstream of the porous media, were measured using micro-thermocouples and ion probes, respectively. Results show that methane/air deflagration flame can be quenched by the Al2O3 porous media with thickness of 20 mm and pore density of 10 ppi. However, the presence of obstacles along the flame path may lead to significant increase of flame speed, thereby both the decreases of gas-phase temperature and ion current when the flame passes through the porous medium in the case with continuous obstacles are less, eventually the unburnt gases downstream the porous media may be reignited. Compared to Al2O3, Al porous media shows superior flame quenching performance because this metallic material has higher thermal conductivity, which makes combusting flame release more heat to the pore walls and adjoining structures of the porous media.  相似文献   

9.
Flame propagation in hybrid mixture of coal dust and methane   总被引:1,自引:0,他引:1  
To investigate the flame propagation through hybrid mixture of coal dust and methane in a combustion chamber, a high-speed video camera with a microscopic lens and a Schlieren optical system were used to record the flame propagation process and to obtain the direct light emission photographs. Flame temperature was detected by a fine thermocouple. The suspended coal dust in the mixture of methane and air was ignited by an electric spark. The flame propagation speeds and maximum flame temperatures of the mixture were analyzed. The results show that the co-presence of coal dust and methane improves the flame propagation speed and maximum flame temperature notably, which become much higher than that of the single-coal dust flame. The flame front temperature varies with the coal dust concentration.  相似文献   

10.
为提供煤尘爆炸事故预防和缓解所需的科学依据,对煤尘爆炸火焰传播过程进行试验研究。所用试验装置,其主要部分为直径0.3 m的圆形管道与断面边长为80 mm的方形管道对接形成的一个长2 m的爆炸腔体。在其中共进行9次煤尘爆炸试验。结果表明,煤尘爆炸火焰传播具有速度快,波动大,稳定性较差的特点,火焰区长度远大于扬尘区长度,最大火焰速度和传播距离与煤尘量均不存在正比例关系,但存在一个特定的煤尘质量浓度。在这个特定质量浓度处,最大火焰速度达到最大值。当煤尘质量浓度大于这个特定质量浓度时,火焰传播速度曲线整体下降,暂时缺氧被认为是导致这一情况的重要因素。  相似文献   

11.
Multidimensional unsteady numerical simulations were carried out to explore the influence of thermal radiation on the propagation and structure of layered coal dust explosions. The simulation solved the reactive compressible Navier-Stokes equations coupled to an Eulerian kinetic-theory-based granular multiphase model. The radiation heat transfer is modeled by solving the radiation transfer equation using the third-order filtered spherical harmonics approximation. The radiation was assumed to be gray and all boundaries of the domain are black at 300 K. The reaction mechanism is based on global irreversible reactions for each physical process including devolatilization, char burning, moisture vaporization, and methane combustion. The governing equations were solved using a high-order Godunov method. Several simulation configurations were considered: layer volume fractions of 47% and 1%, channel lengths of 10 m and 40 m, and radiative and non-radiative cases. The results show that gray radiation has a significant influence on the propagation and structure of a layered dust explosion. However, radiation can have opposite effects on different scenarios. For example, radiation promotes the propagation of the dust flame when the layer volume fraction was 1% and in the short-channel cases where reflected shock-flame interactions are important. However, radiation enhances quenching for the 47% volume fraction dust layer in the longer channel.  相似文献   

12.
13.
Industrial processes are often operated at conditions deviating from atmospheric conditions. Safety relevant parameters normally used for hazard evaluation and classification of combustible dusts are only valid within a very narrow range of pressure, temperature and gas composition. The development of dust explosions and flame propagation under reduced pressure conditions is poorly investigated. Standard laboratory equipment like the 20 l Siwek chamber does not allow investigations at very low pressures. Therefore an experimental device was developed for the investigations on flame propagation and ignition under reduced pressure conditions. Flame propagation was analysed by a video analysis system the actual flame speed was measured by optical sensors. Experiments were carried out with lycopodium at dust concentrations of 100 g/m3, 200 g/m3 and 300 g/m3. It was found that both flame shapes and flame speeds were quite different from those obtained at atmospheric pressure. Effects like buoyancy of hot gases during ignition and flame propagation are less strong than at atmospheric conditions. For the investigated dust concentrations the flame reaches speeds that are nearly an order of a magnitude higher than at ambient conditions.  相似文献   

14.
Experiments on the flame propagation of starch dust explosion with the participation of ultrafine Mg(OH)2 in a vertical duct were conducted to reveal the inerting evolution of explosion processes. Combining the dynamic behaviors of flame propagation, the formation law of gaseous combustion products, and the heat dissipation features of solid inert particles, the inerting mechanism of explosion flame propagation is discussed. Results indicate that the ultrafine of Mg(OH)2 powders can cause the agglomeration of suspended dust clouds, which makes the flame combustion reaction zone fragmented and forms multiple small flame regions. The flame reaction zone presents non-homogeneous insufficient combustion, which leads to the obstruction of the explosion flame propagation process and the obvious pulsation propagation phenomenon. As the proportion of ultrafine Mg(OH)2 increases, flame speed, flame luminescence intensity, flame temperature and deflagration pressure all show different degrees of inerting behavior. The addition of ultrafine Mg(OH)2 not only causes partial inerting on the explosion flame, but also the heat dissipation of solid inert particles affects the acceleration of its propagation. The explosion flame propagation is inhibited by the synergistic effect of inert gas-solid phase, which attenuates the risk of starch explosion. The gas-solid synergistic inerting mechanism of starch explosion flame propagation by ultrafine Mg(OH)2 is further revealed.  相似文献   

15.
为了进一步探究瓦斯煤尘耦合爆炸火焰的传播规律,用自行搭建的半封闭垂直管道爆炸试验系统,研究障碍物对瓦斯煤尘耦合爆炸火焰传播规律的影响。研究结果表明:障碍物能显著提高瓦斯煤尘爆炸火焰的传播速度,其加速机理主要是障碍物诱导的湍流区会促进火焰的传播;火焰在传播过程中的加速度不是一直增加,随着火焰速度的增加会出现上下波动;煤尘的加入会使瓦斯爆炸产生的火焰传播速度显著增大及速度的最大值距离点火端较远;通过障碍物时爆炸产生的火焰形状发生较大的改变,出现拉伸和褶皱现象。  相似文献   

16.
曹文娟  杜文锋 《火灾科学》2012,21(4):181-188
使用0#柴油和沙层作为燃料和地面模型,通过实验研究了泄漏液体燃料渗透在地面之后的火焰传播现象.详细研究了燃料床中沙粒直径、燃烧盘宽度及一端施加辐射热对火焰传播速度的影响,并使用热电偶测量了沙层表面火焰前沿到达时的温度以及沙层表面能够达到的最高温度.结果表明,燃料渗漏在地面的火焰传播速度明显低于液池火灾的火焰传播速度,且改变沙油质量比、燃烧盘的宽度及外界热辐射直接影响火焰传播速度.  相似文献   

17.
为研究水平管道空间不同煤质煤尘爆炸火焰传播特性,选取褐煤、长焰煤、不粘煤、气煤4种煤尘,对爆炸火焰焰峰特性、火焰加速传播特性、火焰传播距离与持续时间展开研究。研究结果表明:褐煤在500 ms内焰峰的形状由尖锐向平滑再向钝化不断演变,长焰煤与不粘煤在375 ms时焰峰前端出现明显焰体分离现象,分析认为这与管体冷壁效应、空间尺度效应及空间氧气消耗直接相关;气煤在375 ms时焰峰出现大面积火焰碎纹,说明气煤爆炸火焰猛烈传播的持续时间相对较短,整体爆炸强度相对较弱;褐煤与长焰煤爆炸火焰存在2次间断性加速,分析认为这与管体空间受限、常温管壁散热、局部助燃氧气瞬间不足等因素有关;褐煤在爆炸后400~600 ms内火焰2次加速完全,火焰传播距离达740 mm,明显大于长焰煤、不粘煤与气煤,说明低变质褐煤爆炸火焰持续时间更长,火焰传播距离更远且传播更剧烈;虽然气煤火焰最远传播距离比长焰煤大30 mm,但由于气煤火焰在375 ms左右出现大片火焰碎纹,因此气煤整体的爆炸强度小于长焰煤。  相似文献   

18.
To reveal the effects of particle characteristics on the mechanisms of flame propagation during organic dust explosions clearly, three long chain monobasic alcohols which are solids at room temperature and have similar physical–chemical properties were chosen to carry out experiments in a half-closed small chamber. A high-speed video camera was used to record the flame propagation process and to obtain the direct light emission photographs. Flame temperature was detected by a fine thermocouple. Based on the experimental results above, analysis was conducted on flame propagation characteristics and temperature profiles of organic particle cloud. As a result, it was found that the particle materials, especially volatility, strongly affected the flame propagation behavior. Particle concentration also affects the combustion zone propagation process significantly. With increasing the particle concentration, the maximum temperature of the combustion zone increases at the lower concentration, reaches a maximum value, and then decreases at the higher concentration. The propagation velocity of the combustion zone has a linear relationship with the maximum temperature, which implies conductive heat transfer is dominant in the flame propagation process of the three different volatile dusts.  相似文献   

19.
Preventing the propagation of flames in a pipeline is an effective measure for avoiding gas explosion accidents and reducing losses. To evaluate the effect of wire mesh, acting as a porous media, experimental and simulation studies are conducted to determine the influence of the wire mesh on the dynamics of premixed methane/air flame propagation in a semi-closed pipe. Four different kinds of wire mesh with different numbers of layers are chosen in the experiments and simulation, and the mechanism of wire mesh quenching of the flame is investigated. The experimental and simulation results are consistent. Flames are quenched when 4 layers of 40-mesh or 3 layers of 60-mesh wire mesh are used; however, once the flame propagates through the wire mesh, the risk of methane combustion may increase. The wire mesh becomes the key factor causing flame folds and acceleration, and the greater the number of layers or the larger the mesh size is, the more obvious the folds after the flame passes through the wire mesh. Moreover, the combination of heat absorption and disruption of the continuous flame surface by the mesh causes flame quenching. Wire mesh can effectively attenuate the flame temperature during premixed flame propagation in a pipe, and the attenuated maximum rate reaches approximately 79% in the case of adding 3 layers of 60-mesh wire mesh.  相似文献   

20.
使用自行设计的火焰加速试验系统,研究了3种立体结构障碍物对管道内预混火焰传播速度和超压的影响。选用长方体、正四棱柱和圆柱,其阻塞比均为40%。结果表明,管道内障碍物对火焰传播的初始阶段起阻碍作用,当火焰越过障碍物后,障碍物加速火焰传播过程。有障碍物时管道内最大火焰传播速度和峰值超压比无障碍物时要大。随着点火距离的增大,管道中最大火焰传播速度和超压先变大后减小。当障碍物位于约6倍管径处时,对管道中火焰传播速度和超压影响最大。点火距离的改变对火焰传播速度的影响大于对管道内超压的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号