首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Aboveground steel storage tanks are widely utilized in industrial areas such as oil refineries, petrochemical complexes, oil depots, and etc. Assurance of these infrastructure facilities in high seismic areas is a very important engineering consideration. High amplitude fluid sloshing is one of the widespread causes of steel oil storage tanks during strong earthquakes addressed as an important failure mode. This phenomenon generates additional forces impacting the wall and roof of the tanks. Annular baffles can be used as slosh damping devises to control liquid sloshing within a tank. The main objective of this paper is experimental study of annular baffle effects as anti-sloshing damping devices to reduce fluid wave sloshing height in steel storage tanks typically used in oil and petrochemical complexes during an earthquake. Shake table tests have been used on a reduced scale model steel storage tank in two cases of with and without annular baffles. Three real earthquake ground motion records are used as input base motion. Based on the experimental test results, dynamic characteristics of studied tank models with different filling levels and different baffle dimensions and arrangements have been obtained and summarized in this paper. Also, sloshing heights and convective mode damping values are determined from the test results and compared with API650 code recommendations and recommended equations by other researchers. Generally, the results of this study indicate significant effects of the annular baffles in reducing the fluid wave sloshing height as sloshing dependent variable dampers.  相似文献   

2.
Deflagration suppression using expanded metal mesh and polymer foams   总被引:1,自引:0,他引:1  
Expanded metal mesh and polymer foams of appropriate pore or cell size and sufficient surface area per unit volume can suppress deflagrations of gas/vapor–air mixtures. This paper reviews the requirements that have been established for use of these materials in military aircraft fuel tanks. Extensions and generalizations of these requirements for other applications have been developed and incorporated into the 2008 edition of the NFPA 69 Standard for Explosion Prevention. The new NFPA 69 requirements for testing, evaluating, and installing these materials are summarized here along with an explanation of the basis and rationale for these requirements.  相似文献   

3.
Vapors inside atmospheric and low-pressure storage tanks may condense either slowly during rainfalls or abruptly for instance by injection of cold liquid during steaming. Vapor condensation inside tanks may result in deformation and collapse. The latest editions of API 2000 and ISO 28300 standards lack an explicit formulation for the required in-breathing to compensate for vapor condensation, caused by a prolonged rainfall, which is the main topic of this paper. The analytical model here, which includes vapor condensation on the tank walls, predicted total in-breathing requirements for mixtures of air saturated with vapors, which are substantially larger than those calculated using the procedures in the standards. This paper is aimed to provide some realistic guidance for the reader addressing the issue of vapor condensation when determining the worst realistic case scenario for the tank breathing requirements.  相似文献   

4.
The boiling liquid expanding vapour explosion (BLEVE) has existed for a long time and for most of this time it has been cloaked in mystery. Several theories have been put forward to explain this very energetic event but none have been proven. This paper describes a series of tests that have recently been conducted to study this phenomenon.

The study involved ASME code automotive propane tanks with nominal capacities of 400 litres. The tanks were exposed to a combination of pool and/or torch fires. These fire conditions led to thermal ruptures, and in some cases these ruptures resulted in BLEVEs. The variables in the tests were the pressure-relief valve setting, the tank wall thickness, and the fire condition.

In total, 30 tests have been conducted, of which 22 resulted in thermal ruptures. Of those tanks that ruptured, 11 resulted in what we call BLEVEs. In this paper, we have defined a BLEVE as the explosive release of expanding vapour and boiling liquid following a catastrophic tank failure. Non-BLEVEs involved tanks that ruptured but which only resulted in a prolonged jet release.

The objective of this study was to investigate why certain tank ruptures lead to a BLEVE rather than a more benign jet-type release. Data are presented to show how wall temperature, wall thickness, liquid temperature and fill level contribute to the BLEVE process.  相似文献   


5.
Steel tanks are widely used in the storage of various chemical liquids, and the blast resistance of the tanks is very important because of the explosiveness of these liquids. To explore a feasible method to improve the blast resistance of steel tanks, the effect of polyurea coating on the blast resistance of steel storage tank is investigated in this paper. The responses of monolithic steel tanks and polyurea coated tanks under blast loads are studied by field blast experiments using TNT explosive, and the results shows that the polyurea layers are effective in reducing the maximum and residual displacements of the tank. Numerical simulations are performed and validated, and the deformation process and stress and strain distribution of the tanks are analyzed accordingly. The increase on the bending moment of the plastic hinge lines of the tanks and the increase of the area density of the cylindrical shell induced by the polyurea layers are believed to be the two main factors contributing to the displacement reduction effect of polyurea in this paper. The validated numerical model is used to study the influence of polyurea layer's thickness on the deflection of the tank, and a nearly inversely proportional relationship between the thickness and the maximum displacement is found. Three deformation modes of the tanks are identified when subjected to blast load with varying intensity and it is found that the displacement reduction effect of polyurea varies in different deformation modes.  相似文献   

6.
This study aims to improve the fundamental understanding on the performance of bottom plates in above ground storage tanks (ASTs) during flood events. To this end, fragility models that estimate the probability of material yielding and rupture in the bottom plates were derived. A significant number of ASTs are located in coastal areas and are susceptible to hurricane hazards. Consequently, ASTs have suffered severe damage during past hurricanes resulting in spills with catastrophic environmental and social impacts. Therefore, several failure modes such as flotation, buckling, and sliding have been studied in past research. However, the literature lacks studies that consider the failure of bottom plate due to uplift pressure generated during floods and there are no design guidelines to address this issue. To address this gap, fragility functions that provide the probability of failure as a function of tank geometry, material properties, design parameters, and hazard conditions were developed herein. For this purpose, Latin Hypercube Sampling was performed to span the space of these parameters uniformly. For each parameter combination, maximum stresses in bottom plates were determined using analytical formulations for simply supported and clamped boundary conditions and were compared against two different failure thresholds. The results were used to develop a closed form fragility model using step wise logistic regression. Fragility functions were applied to four case study tanks. Sensitivity analysis were performed to understand the impacts of different probability density functions for various variables on the bottom plates’ fragility. The results provided several insights such as ASTs with larger diameter were vulnerable to bottom plate failure. Comparison with other failure modes revealed that the probability of bottom plate failure was higher than flotation failure for anchored ASTs with clamped boundary condition.  相似文献   

7.
大型外浮顶储罐多次发生雷击起火事故,因此对其安全性做出客观评价,计算雷击起火概率现实意义重大。通过分析雷电对外浮顶油罐的危害方式,利用蒙特卡洛方法结合电气几何模型计算外浮顶油罐年雷击率。分析采用导静电线和可伸缩接地装置(RGA)的防护效果差别。最后计算安装可伸缩接地装置后油罐遭受雷击产生火花放电的年事故率。计算结果表明:年雷击率随着油罐直径和罐壁高度的增大而增加;采用可伸缩接地装置的防护效果明显优于传统导静电线;安装多个可伸缩接地装置可以明显降低产生火花的概率和年事故率。两个RGA就可以将油罐遭受雷击产生火花放电的年事故率降至10-5以下。  相似文献   

8.
化工储罐爆炸后将产生大量碎片,这些抛射碎片一旦击中相邻罐体容易引发多米诺效应。碎片的抛射方位和抛射距离具有很大的随机性,已有研究多采用概率模型来描述碎片抛射的各分过程。通过总结和发展已有的分过程模型,建立了求取多米诺效应的综合概率模型,并基于蒙特卡罗算法编制了模拟软件,可对化工储罐多米诺效应的发生概率进行预测计算。选取若干常用化工球罐为相邻目标储罐进行实例分析,计算结果表明储罐间距和体积是影响多米诺效应发生概率的两个重要影响因素:随着距离的增大,多米诺效应发生概率不断减小;目标储罐体积越大,多米诺效应发生概率将越大。其中,爆炸碎片对目标储罐的击中概率受上述因素的影响程度更大。该文工作对化工储罐区的安全评价具有一定的参考价值。  相似文献   

9.
The downstream as well as the upstream oil and gas industry has for a number of years been aware of the potential for flame acceleration and overpressure generation due to obstacles in gas clouds caused by leaks of flammable substances. To a large extent the obstacles were mainly considered to be equipment, piping, structure etc. typically found in many installations. For landbased installations there may however also be a potential for flame acceleration in regions of vegetation, like trees and bushes. This is likely to have been the case for the Buncefield explosion that occurred in 2005 (Buncefield Major Incident Investigation Board, 2008), which led to the work described in the present paper. The study contains both a numerical and an experimental part and was performed in the period 2006–2008 (Bakke and Brewerton, 2008, Van Wingerden and Wilkins, 2008).The numerical analysis consisted of modelling the Buncefield tank farm and the surrounding area with FLACS. The site itself was not significantly congested and it was not expected to give rise to high overpressures in case of a hydrocarbon leak. However, alongside the roads surrounding the site (Buncefield Lane and Cherry Tree Lane), dense vegetation in the form of trees and bushes was included in the model. This was based on a site survey (which was documented by video) performed in the summer of 2006.A large, shallow, heavier-than-air gas cloud was defined to cover part of the site and surroundings. Upon ignition a flame was established in the gas cloud. This flame accelerated through the trees along the surrounding roads, and resulted in high overpressures of several barg being generated by FLACS. This is to the authors’ knowledge the first time a possible effect of vegetation on explosions has been demonstrated by 3D analyses.As a consequence of these results, and since the software had been validated against typical industrial congestion rather than dense vegetation, a set of experiments to try to demonstrate if these effects were physical was carried out as well. The test volume consisted of a plastic tunnel, 20 m long with a semi-circular cross-section 3.2 m in diameter allowing for representing lanes of vegetation. The total volume of the tent was approximately 80.4 m3. The experimental programme involved different degrees of vegetation size, vegetation density (blocking ratio) and number of vegetation lanes (over the full length of the tunnel). The experiments were performed with stoichiometric propane–air mixtures resulting in continuously accelerating flames over the full length of the tunnel for some of the scenarios investigated.The main conclusions of the study are that trees can have an influence on flame acceleration in gas–air clouds, and that advanced models such as FLACS can be used to study such influence. More research is needed, however, because even if FLACS predicts flame acceleration in dense vegetation, no evidence exists that applying the code to trees rather than rigid obstacles provides results of acceptable accuracy.  相似文献   

10.
This paper describes the results from a series of fire tests that were carried out to measure the effect of defects in thermal protection systems on fire engulfed propane pressure vessels.

In North America thermal protection is used to protect dangerous goods rail tank-cars from accidental fire impingement. They are designed so that a tank-car will not rupture for 100 min in a defined engulfing fire, or 30 min in a defined torching fire. One common system includes a 13 mm blanket of high-temperature ceramic fibre thermal insulation covered with a 3 mm steel jacket. Recent inspections have shown that some tanks have significant defects in these thermal protection systems. This work was done to establish what levels of defect are acceptable from a safety standpoint.

The tests were conducted using 1890 l (500 US gallon) ASME code propane pressure vessels (commonly called tanks in the propane industry). The defects tested covered 8% and 15% of the tank surface. The tanks were 25% engulfed in a fire that simulated a hydrocarbon pool fire with an effective blackbody temperature of 870 °C.

The fire testing showed that even relatively small defects can result in tank rupture if the defect area is engulfed in a severe fire, and the defect area is not wetted by liquid from the inside. A wall failure prediction technique based on uniaxial high-temperature stress rupture test data has been developed and agrees well with the observed failure times.  相似文献   


11.
Insulation is typically used in extra-large double-walled cryogenic storage tanks that are used to store liquid natural gas (LNG). These vessels have been designed with the assumption that the insulation offers negligible structural resistance that might cause structural damage. Observation of the deformation of the insulation in such tanks leads to concern that the insulation may become sufficiently compacted to cause significant load transfer between the inner and outer tank. The inner tank, though protected from most external events by the outer tank, is only designed to contain the liquid gas. It is therefore much more sensitive to seismic effects. In this investigation, simplified and 3D finite element models are used to simulate the interaction effects of the fluid, inner tank, insulation and outer tank. This paper presents an initial analysis of the potential effects of LNG tank insulation under earthquake conditions and assesses the potential for structural damage by comparison of models that do or do not consider the insulation layer. The data reported and statistically sorted include the overturning moment, the base shear, the tank wall stress, and the wave height in the tank. The results show that the insulation layer has certain influence on seismic design of LNG tanks.  相似文献   

12.
Hurricane as one of the most destructive natural hazards can make a devastating impact on the industrial equipment, especially atmospheric storage tanks, leading to the release of stored chemicals and disastrous safety and environmental issues. These catastrophic consequences are caused not only by strong winds but also by the torrential rainfall and inundating floods. The objective of this study is to present a risk-based methodology for assessing and reducing the vulnerability of atmospheric storage tanks to hurricanes. Considering the shell buckling, flotation, sliding, and roof sinking as dominant failure modes of atmospheric storage tanks during hurricanes, Bayesian network (BN) has been employed to combine the failure modes while considering their conditional dependencies. The probability updating feature of the developed BN was employed to indicate that the flood is the most critical hazard during hurricanes while the impact of wind and rainfall cannot be neglected. Extending the developed BN to an influence diagram, the cost-benefit filling of storage tanks with water prior to the advent of hurricanes was shown as a viable measure for reducing the damage probability. The results show that the proposed methodology can be used as an effective decision support tool for assessing and reducing the vulnerability of atmospheric storage tanks to natural hazards.  相似文献   

13.
Experience shows that, despite the best efforts of the pipeline industry worldwide, pipelines do fail and release their contents to the atmosphere. In the case of below-ground pipelines transmitting natural gas, there is a chance that the release will be ignited, posing a significant hazard to any people in the vicinity. Mindful of this hazard, an international group of gas companies have collaborated over a period of many years on research projects aimed at developing an understanding of how these releases may arise (failure causes), how often they might occur (failure frequency), what type of releases might be produced (failure modes) and what type of behaviour might be produced for each of these modes of release (consequence analysis). This paper has been prepared to describe the mathematical models that have been developed on behalf of this group to assess the initial transient period following the rupture of a buried natural gas transmission pipeline assuming the release ignites immediately. It gives details of the equations used by the different models and it refers to some of the experimental data that has been used in the development of the models. A comparison of the model with the experimental data is provided. This demonstrates that the early stages could have a significant impact when evaluating the harm that could be caused. This provides a justification for developing the models rather than using a simpler alternative that does not take the initial highly transient period into account.  相似文献   

14.
The modal low frequency noise generated by a vibrating elastically supported circular plate embedded into a flat infinite baffle has been examined. The main aim of this study is the analysis of the radiation efficiency. Low frequency approximated formulas have been presented. They are valid for all the limiting boundary conditions of the plate with its edge clamped, guided, simply supported or free as well as for all the intermediate axisymmetric boundary configurations. The formulas are expressed in the elementary form, useful for numerical computations. They are a generalization of some earlier published results. First, they are valid for axisymmetric and asymmetric modes since both kinds of modes play an important role in the low frequency range. Second, a single formula for the radiation efficiency, valid for all the axisymmetric boundary configurations, has been proposed. A numerical example for the sound power radiation has been given for some hatchway covers mounted on a ship deck.  相似文献   

15.
Blast damage to storage tanks and steel clad buildings   总被引:1,自引:0,他引:1  
The 2005 Buncefield vapour cloud explosion showed the huge cost associated with blast damage to commercial property surrounding a major explosion incident. In most cases there was serious disruption to business activity; in many cases the buildings had to be demolished or abandoned for long periods until extensive repairs were carried out.Another key feature of this and other recent vapour cloud explosions has been the damage done to storage tanks. The blasts almost invariably cause immediate top and bund fires in any tanks surrounded by the vapour – even if they contain relatively high flashpoint materials such as diesel.The first part of this paper describes the patterns of damage observed in buildings in the industrial estates around Buncefield. Methods for assessing the degree of external and internal damage are presented.The second part of the paper deals with failure modes and ignition of various types of liquid storage tank during vapour cloud explosions. Again, the Buncefield data provides excellent examples that illustrate the importance of tank design, fill level, location relative to the cloud, etc.  相似文献   

16.
Risk-based inspection for large-scale crude oil tanks   总被引:1,自引:0,他引:1  
Periodic Internal Inspection Method often results in under-inspection or over-inspection for large-scale crude oil tank. Therefore, how to determine reasonable internal inspection interval (INTII) has great significance on balancing the safe operation requirement and inspection cost for crude oil tanks. Here, RBI (risk-based inspection) technology is used to quantitatively assess the risk of crude oil tanks in an oil depot in China. The risk comparison between tank shell and bottom shows that the risk of tank depends on the risk of tank bottom. The prediction procedure of INTII for crude oil tanks is also presented. The INTII predicted by RBI method is gradually extended with the increasing of the acceptable risk level. The method to determine the acceptable risk of crude oil tanks is proposed, by which 3.54E+04 are taken as the acceptable risk of the oil depot. The safety factor of 0.8 is proposed to determine the final INTIIs for 18 crude oil tanks. The INTII requirement in China code SY/T 5921, 5-7 years, is very conservative and lower than predicted service life of tanks. The INTIIs predicted by Gumbel method are smaller than by RBI method for tanks with short INTII. Therefore, this paper recommends RBI method to predict the INTII for crude oil tanks.  相似文献   

17.
塔式起重机的结构特点和使用要求决定了它不可避免产生振动。详细介绍了使用有限元法求解塔机的振动模态的步骤。使用非接触法测量塔机的振动频率,给出塔机振动的架构、算法设计、数据结果及处理。试验证实,使用有限元法可以对塔机的金属结构振动进行有效分析和计算,与非接触法测量的结果接近,误差在15%以内。通过对非接触测量的结果分析可以得到塔机金属结构不同部件间刚度强弱的关系。  相似文献   

18.
为实现钢板对接焊缝存在不同类型缺陷的识别研究,针对铁磁性焊缝的特点,探讨应用漏磁法检测钢板对接焊缝不同类型缺陷。根据漏磁检测(MFL)原理,采用有限元方法(FEM),分别建立钢板对接焊缝中可能存在的裂纹、气孔、未熔合和未焊透等缺陷的三维FEM模型。研究钢板对接焊缝包含以上不同类型缺陷时所产生的漏磁场分布特征,得到漏磁场磁感应强度水平分量和垂直分量相关对比分析曲线。仿真结果表明:漏磁法适用于钢板对接焊缝缺陷的识别研究;根据漏磁场磁感应强度分量的曲线特征,能够实现对焊缝缺陷的分类。  相似文献   

19.
罐壁式泡沫系统扑救密封圈火灾试验研究   总被引:1,自引:1,他引:0  
针对大型浮顶罐罐壁式泡沫灭火系统的特点及不足,依据相关规范要求设计了30m长的密封圈火灾模拟试验油槽,开展了3%型水成膜泡沫液和6%型氟蛋白泡沫液灭火试验。现场测定了泡沫的发泡倍数和析液时间,符合规范要求但略低于检测值。试验过程测定了泡沫在泡沫堰板内的流动速度和燃烧油面的蔓延速度,观察了不同的泡沫液和泡沫混合液供给强度下的油槽火灭火状况,对比分析了油槽火周邻的温度和热流分布。在此基础上,评估分析了罐壁式泡沫系统扑救密封圈火灾的有效性。试验结果表明:有效的泡沫混合液供给强度下,3%型水成膜泡沫和6%型氟蛋白泡沫可控密封圈火灾,甚至灭火;泡沫类型和泡沫混合液供给强度对油槽火全淹没时间的影响较大。该试验对大型浮顶罐低液位密封圈火灾扑救具有积极的指导意义和工程应用价值。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号