首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
两株高效好氧反硝化细菌的分离鉴定及其脱氮效率   总被引:8,自引:0,他引:8  
从水稻土和活性污泥中分离到两株可以在好氧条件下进行反硝化作用的细菌ZW23和ZW27.通过对这两株细菌的形态观察和生理生化特征,以及16S rDNA序列测定认为菌株ZW23和ZW27分别是假单胞菌属类产碱杆菌(Pseudomonas pseudoalcaligenes)和假单胞菌属门多萨菌(Pseudomonas mendocina).好氧培养条件下,在初始氮源约为280.00mg·L-1的反应体系中,两株细菌在12h内均引起体系中总氮显著下降,削减率分别达66.43%和65.54%,其余总氮几乎全部转化为内源氮.脱氮速率分别达到约21.72mg·L-1·h-1和22.31 mg·L-1·h-1,比现已分离出的兼性好氧反硝化细菌的脱氮速率要快得多.反应过程中没有检测到亚硝态氮和氨态氮的积累.菌株ZW23和ZW27是两株典型的高效兼性好氧反硝化细菌,具有重要的应用价值.  相似文献   

2.
从受氮污染浅层含水层介质中分离纯化得到1株高效异养硝化-好氧反硝化细菌XK51,经过菌落形态、生理生化特性及16S rDNA基因序列分析,鉴定该菌株为假单胞菌属恶臭假单胞菌(Pseudomonas Putida)。脱氮性能结果表明:XK51为兼性反硝化细菌,能在好氧或缺厌氧条件下高效反硝化脱氮,最大和平均反硝化速率分别为27.3,4.4 mg/(L·h),硝酸盐脱除率为95.3%;该菌株同时具有较高异养硝化能力,最大和平均硝化速率分别为4.2,1.4 mg/(L·h),氨氮脱除率为98.5%。XK51最佳碳源为柠檬酸三钠,适宜生长温度为28~35℃,最适温度为30℃;适宜生长pH为6.5~8.0,最适pH为7.0。XK51可同时进行异养硝化及同步硝化-反硝化,培养期间未出现明显亚硝酸盐和硝酸盐累积,在含氮污废水处理和地下水氮污染修复方面具有潜在工程应用价值。  相似文献   

3.
从经过高盐驯化的好氧颗粒污泥系统中筛选出一株异养硝化-好氧反硝化菌HY3-2,通过形态学观察及16S rDNA序列分析得出HY3-2为Klebsiella quasipneumoniae subsp.quasipneumoniae.研究了HY3-2对氨氮、硝酸盐和亚硝酸盐的去除特性,结果表明该菌具有良好的异养硝化和好氧反硝化功能,对氨氮、硝酸盐和亚硝酸盐的去除率分别达63.57%、88.11%和98.38%.对菌株脱氮性能研究表明:HY3-2以甘油为碳源,C/N为25,温度为20℃或30℃,转速为150r/min,盐度低于50g/L时,对100mg/L的NH4+-N去除效果良好,去除率达90.7%;以柠檬酸钠为碳源,C/N为25,温度为30℃,转速为150r/min,盐度低于15g/L时能进行良好的好氧反硝化作用,NO3--N去除率达99%以上.  相似文献   

4.
味精废水有机物及氨氮含量高,给废水达标处理带来一定难度。文章以味精厂生产废水的实际处理工艺为例,重点研究味精废水混凝预处理、厌氧处理、好氧处理、厌氧氨氧化(Anaerobic Ammonium Oxidation,Anammox)脱氮工艺等四位一体工艺的运行参数及处理效果。研究结果表明,工艺能够稳定运行,并且COD及氨氮去除率达96%以上,处理后出水满足《味精工业污染物排放标准》(GB 19431-2004)。  相似文献   

5.
为探究深水水库沉积物微生物功能特征及利用价值,于2019年在实验室对小湾水库表层沉积物微生物进行了驯化分离,并分析了其中一株细菌的脱氮效率.结果表明,分离出的细菌XW731经鉴定属于假单胞菌属(Pseudomonas sp.),是一种贫营养型好氧反硝化菌;在分别以NH4+-N、NO3--N和NO2--N为唯一氮源时,该菌对NH4+-N、NO3--N和NO2--N去除率分别为33.6%、68.5%和9.1%;以NH4+-N和NO3--N为氮源时,对NH4+-N和NO3--N去除率分别为66.4%、89.6%,同步硝化反硝化能力更强.将该菌投加到两种城市微污染水体后测试表明,该菌对城市河道水体的NH4+-N和NO3--N去除率分别为38.3%和42.4%,对城市降雨水体的NH4+-N和NO3--N去除率分别为22.2%和7.7%.  相似文献   

6.
从杭州市天子生活岭垃圾填埋垃圾渗滤液调节池周围土壤样品中分离到一株异养硝化-好氧反硝化细菌ZB612,通过形态学观察及16S rDNA同源性分析,初步鉴定属于根瘤菌属(Rhizobium sp.).随后研究了该菌株的脱氮能力,结果表明在初始氨氮浓度为100mg/L异养硝化培养基中,氨氮的去除效率达到90%,未出现明显的硝态氮和亚硝态氮积累,具有同步硝化反硝化特征;在亚硝酸盐反硝化体系中,亚硝态氮的去除效率达到60%.除此还考察了四种单因素 (温度、pH值、碳氮比和碳源种类) 分别对菌株ZB612脱氮效率的影响:该菌株的最佳脱氮条件为温度30℃,初始pH=7,C/N=8,以葡萄糖作为最适碳源.  相似文献   

7.
耐高氨氮异养硝化-好氧反硝化菌TN-14的鉴定及其脱氮性能   总被引:2,自引:6,他引:2  
信欣  姚力  鲁磊  冷璐  周迎芹  郭俊元 《环境科学》2014,35(10):3926-3932
从环境中筛选出1株耐高氨氮、具有产絮、异养硝化-好氧反硝化能力的新菌株TN-14,对其进行生理生化特征及分子鉴定、异养硝化-好氧反硝化能力以及产絮性能的考察,并研究其与耐氨氮能力以及对高氨氮猪场废水的除污性能.根据菌株生理生化特征以及分子鉴定结果,可初步确定菌株TN-14为不动杆菌Acinetobacter sp..异养硝化反应体系中,24 h内菌株TN-14对氨氮、总氮的去除率分别达到97.13%和93.53%;硝酸盐反硝化体系中,24 h内硝态氮从94.24 mg·L-1降到39.32mg·L-1,硝态氮的去除率达到58.28%,反硝化速率为2.28 mg·(L·h)-1;亚硝酸盐反硝化体系中,亚硝态氮从反应初始浓度97.78 mg·L-1下降到21.30 mg·L-1,亚硝态氮去除率达78.22%,反硝化速率为2.55 mg·(L·h)-1.菌株TN-14具有良好的产絮特性,其培养液对0.4%的高岭土悬浊液的絮凝率可达94.74%;菌株TN-14能够在氨氮高达1200 mg·L-1的环境下生长.菌株TN-14对实际猪场废水中的COD、氨氮、总氮和总磷去除率分别达到85.30%、65.72%、64.86%和79.41%,在实际高氨废水生物处理中具有良好的应用前景.  相似文献   

8.
1株异养硝化-好氧反硝化细菌DK1的分离鉴定及其脱氮特性   总被引:4,自引:3,他引:4  
从某反应器活性污泥中分离筛选出1株假单胞菌属(Pseudomonas sp.)细菌,命名为DK1,并对该菌进行脱氮特性研究.在以葡萄糖为碳源,C/N量比为5时,分别以NaNO_3和NaNO_2为氮源,二者的好氧反硝化速率为4.09 mg·(L·h)-1和4.43mg·(L·h)~(-1).以二者同时为氮源脱氮率为100%;此外,菌株DK1具有异养硝化性能,NH_4~+-N平均去除速率为2.32mg·(L·h)-1.缺氧时以NO_2~--N为氮源菌株DK1可将一系列梯度浓度NO_2~--N(约100~300 mg·L-1)在36 h内降为0.当NO_3~--N和NO_2~--N同时存在时,菌株DK1会优先利用NO_3~--N进行反硝化.同时该菌株还具有同步硝化反硝化(SND)性能,可同时去除NH_4~+-N、NO_2~--N或NH_4~+-N、NO_3~--N,30 h内脱氮率分别达95.06%和94.69%.相同时间内在NH_4~+-N、NO_2~--N和NO_3~--N三者均存在时,脱氮效果最佳,达100%.菌株DK1的高效SND及反硝化性能表明其在处理含氮废水方面有一定的潜力和应用价值.  相似文献   

9.
赵丹  于德爽  李津  汪晓晨 《环境科学学报》2013,33(11):3007-3016
从稳定运行的ASBR厌氧氨氧化反应器中分离筛选出一株在缺氧和好氧条件下均具有高效反硝化能力的菌株ZD8,该菌株为假单胞属(Pseudomonas sp.),大小2 μm×0.25 μm,无鞭毛和芽孢.实验结果表明,缺氧条件下,ZD8最适合的碳源为柠檬酸钠;当C/N为10时,具有最佳的反硝化效果.菌株ZD8在缺氧条件下不具有硝化能力.在好氧条件下菌株ZD8获得最佳反硝化效果的C/N为22,最适合pH范围是7.2~9.9.菌株ZD8在好氧条件下具有高效的异养硝化能力,NH4+-N平均去除速率为8.3 mg·L-1·h-1.当以KNO3为氮源时ZD8的反硝化速率为13.1 mg·L-1·h-1;而以NaNO2为氮源时,其反硝化速率为6.98 mg·L-1·h-1.在同时存在NH4+-N和NO3--N或NH4+-N和NO2--N的系统中,菌株ZD8均首先利用NH4+-N发生硝化作用,NH4+-N的存在对反硝化具有抑制作用,并且NH4+-N对NO2--N的反硝化抑制作用更强;在同时存在NO3--N和NO2--N的系统中,菌株ZD8优先利用NO3--N进行好氧反硝化脱氮.  相似文献   

10.
从天然河水中富集分离出8株异养硝化-好氧反硝化(HN-AD)菌株.将单菌株根据其自身的种属类别及脱氮性能复配成5种由不同菌株构成的菌剂,优选出脱氮效果最佳的复配菌剂-2,其包括6株菌株,分别为Pseudomonas stutzeri MR1,Pseudomonas sp.MR2,Pseudomonas sp.MR3,P...  相似文献   

11.
1株海洋异养硝化-好氧反硝化菌的分离鉴定及其脱氮特性   总被引:7,自引:11,他引:7  
以海水为基质,采用传统的微生物分离纯化方法,从海底沉积物中分离筛选得到1株耐盐异养硝化-好氧反硝化细菌y5,经形态、生理生化特性以及16S rRNA基因序列分析,鉴定该菌为克雷伯氏菌(Klebsiella sp.).对其脱氮特性及影响因素进行了研究,结果表明,菌株y5的最佳碳源为柠檬酸三钠,最适p H值为7.0,最适C/N为17.菌株均能以NH4Cl、Na NO2和KNO3为唯一氮源进行反应,36 h的去除率分别为77.07%、64.14%和100%.3种氮源共存时,36 h的去除率达到100%.表明菌株y5在高盐废水中具有独立高效的异养硝化和好氧反硝化作用.  相似文献   

12.
筛选出1株耐盐异养硝化-好氧反硝化菌qy37,通过形态观察、生理生化试验和16S rDNA序列分析,确定其为假单胞菌属(Pseudomonas).研究了异养硝化-好氧反硝化菌qy37的脱氮特性.在以NH4Cl为氮源的异养硝化系统内,该菌32 h内使NH 4+-N由138.52 mg/L降至7.88 mg/L,COD由2 408.39 mg/L降至1 177.49 mg/L,NH2 OH最大积累量为9.42 mg/L,NO 2--N最大积累量仅为0.02 mg/L,推测该菌将NH2OH直接转化为N2O和N2从系统中脱除.在以NaNO2为氮源的好氧反硝化系统内,该菌24 h内使NO 2--N由109.25 mg/L降至2.59 mg/L,NH2OH最大积累量为3.28 mg/L.好氧反硝化系统与异养硝化系统相比菌体生长量高,TN去除率低,COD消耗量低,NH2OH积累量低,并且检测到NO 3--N的积累.认为好氧反硝化在菌体生长和能量利用方面比异养硝化更有效率.在异养硝化-好氧反硝化混合系统内,16 h NH 4+-N去除速率比异养硝化系统提高了37.31%.混合系统的NH2 OH积累量低于异养硝化系统和好氧反硝化系统,但N2 O产出量高于二者.  相似文献   

13.
海洋菌株y3的分离鉴定及其异养硝化-好氧反硝化特性   总被引:5,自引:4,他引:5  
从胶州湾海底沉积物中筛选出1株高效的海洋异养硝化-好氧反硝化细菌y3,经形态学观察、生理生化实验和16S rRNA基因序列分析,确定该菌株为假单胞菌属(Pseudomonas sp.).对其在实际含氮海水中的脱氮实验结果表明,菌株y3的最佳碳源为柠檬酸三钠,最适p H为7.0,最适C/N为13;菌株均能以NH4Cl、Na NO_2和KNO_3为唯一氮源进行反应,20 h后其去除率分别为98.69%、78.38%和72.95%,在硝化过程中几乎没有亚硝酸盐和硝酸盐的积累.以不同比例混合两种氮源反应20 h,当NO~-_3-N∶NO~-_2-N分别为2∶1、1∶1和1∶2时,脱氮率分别为99.56%、99.75%和99.41%;当NH~+_4-N∶NO~-_3-N分别为2∶1、1∶1、1∶2时,脱氮率均为100%;当NH~+_4-N∶NO~-_2-N分别为2∶1、1∶1、1∶2时,脱氮率分别为90.43%、92.79%和99.96%,多高于单一氮源的情况.该菌株具有较好的高盐废水脱氮处理效能.  相似文献   

14.
后置反硝化生物脱氮除磷工艺在水处理中的应用   总被引:1,自引:0,他引:1  
介绍了AOAO、SBR、MSBR、氧化沟、DEPHANOX等后置反硝化生物除磷脱氮工艺的流程及处理效果。该工艺由于聚磷微生物经过厌氧释磷后进人生化效率较高的好氧环境,其在厌氧池形成的吸磷动力可以充分地得到利用.故有较好的除磷效果。但碳源不足制约了系统的脱氮效果.在解决好反硝化脱氮碳源问题的条件下.该工艺也能取得较好的同时脱氮除磷效果,且操作简便,运行费用低.将有较好的应用前景。  相似文献   

15.
从江门某污水处理厂活性污泥中分离出一株能够高效脱除氨气的菌株JN-4.通过菌株形态观察、生理生化及16SrDNA分子鉴定,发现菌株JN-4与枯草芽孢杆菌(Bacillus subtilis)亲缘关系最为接近,同源性达到99%,认为JN-4为一株枯草芽孢杆菌(Bacillus subtilis).好氧培养条件下,以葡萄糖为碳源,JN-4在32h内对NH4+-N和NO2--N的总削减率能够达98.51%和84.50%,体系中总氮的削减率达到63.1%和16.9%,N2的产生量分别为3.72mmol·L-1和0.62mmol·L-1.好氧培养条件下,以KNO3为唯一氮源,NO3--N初始浓度为82.47mg·L-1,32h内体系中NO3--N的总削减率达到96.54%,体系中总氮的削减率达49.6%,产生1.44mmol·L-1的N2,反应中检测到有NH4+-N迅速积累,但会随着时间进行同步转化,可见JN-4不仅能够高效硝化脱氨,同时具有高效好氧反硝化的能力.JN-4在厌氧以及乙酸钠作为碳源的条件下,利用NH4+-N效率大大降低,但是能够在NO3--N存在时进行NO3--N还原(反硝化).JN-4能够进行多途径氮代谢,为一株异养硝化-好氧反硝化偶联的菌株,具有重要的应用价值.  相似文献   

16.
针对污水处理厂冬季生物脱氮效率低、出水水质不达标的问题,从活性污泥中分离出1株耐低温异养硝化-好氧反硝化菌株Glutamicibacter sp.WS1.采用PCR技术扩增该菌株的脱氮功能基因,研究其对不同氮源的低温脱氮效能,通过单因素实验探究环境因子对其低温好氧反硝化性能的影响,并利用氮平衡解析其氮代谢路径.结果表明,菌株WS1含有氮代谢相关的功能基因amoAnapAnirSnirK;在15℃低温条件下,菌株WS1在以NH4+-N、NO3--N、NO2--N+NO3--N和NH4+-N+NO3--N为氮源时,对各无机氮的去除率分别为100%、98.10%、99.87%+100%和100%+94.92%;菌株WS1的最佳反硝化条件:柠檬酸钠为碳源、C/N为16、pH为8、ρ(DO)为4.5~6.8 mg ·L-1和温度为30℃;在低温(15℃)和低C/N (10)条件下,菌株WS1对NO3--N的去除率达到92.50%;异养硝化-好氧反硝化/好氧反硝化和同化作用是菌株WS1去除不同氮源底物的主要途径,其中大部分的无机氮(47%~56%)通过异养硝化-好氧反硝化/好氧反硝化作用转化为了气态氮.菌株WS1在低温污水脱氮领域具有广阔的应用前景.  相似文献   

17.
城市污水处理和大部分的工业废水处理工艺的出水总氮普遍难以达标排放,基于进水水质的C/N值不稳定、提高回流比造成水力负荷增大、降低反应动力学并且耗能、投加有机碳源带来二次污染以及高污泥产率等问题,急需寻求一种节能降耗、操作简单的深度脱氮方法.对此,利用含硫工业废水预处理产生的含硫铁化学污泥作为固相电子供体进行自养反硝化深度脱氮,实验过程中,以焦化废水二级生物出水作为研究对象,考察脱氮性能、硫铁泥转变过程及微生物群落变化,求出废水深度脱氮新工艺的优化反应条件与效果范围.当进水NO_3~--N、NO_2~--N浓度分别是(74.54±0.57)mg·L~(-1)、(1.11±0.19)mg·L~(-1),水力停留时间为18 h时,对应出水浓度分别降低至(2.78±1.08)mg·L~(-1)、(2.87±0.71)mg·L~(-1);TON(NO_3~--N+NO_2~--N)去除率高达90.0%;NO_3~--N还原速率和NO_2~--N累积速率分别为12.06 mmol·(L·d)-1、7.74 mmol·(L·d)-1.结果表明,以副产物化学硫铁泥作为电子供体深度脱氮有潜在的工程应用价值,以水处理工艺过程中原位利用废物,解决部分富硫铁化学污泥后续处理问题,表现出资源化利用的综合特征.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号