首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
介绍了我国火电厂CO2排放特点,阐述了火电厂CO2减排技术、成本及影响因素,分析了CO2减排对中国未来能源和经济的影响。指出最适合CO2捕集技术发展的电厂类型是超超临界燃煤电厂和IGCC电厂,CO2减排技术的研发重点是大幅度降低成本和效率损失。  相似文献   

2.
随着中国经济发展,温室气体排放量大幅增加。温室气体中,CO2的排放对气候的负面影响十分巨大,CO2排放已成为燃煤发展的瓶颈问题之一。针对电力工业CO2排放状况,介绍了几种火电厂CO2排放捕集措施:燃烧前脱碳、富氧燃烧以及燃烧后脱碳技术,分析了各项技术的优势和可行性;指出了低碳经济下火电厂的CO2减排方向。  相似文献   

3.
《化工环保》2016,(4):369-369
正海洋石油高效开发国家重点实验室提高采收率研究室成立于年月。研究室以高速高效开发油气藏、提高油气采收率为主线,先后开展了聚合物驱、高效复合驱、稠油活化水驱、深部调剖、多枝导流适度出砂、稠油热采、气驱、微生物采油、压裂等多项重大和关键技术攻关,指导并协助油田矿场试验,解决了一系列生产现场的重要技术难题,基本形成了海上稠油聚合物驱油技术体系。近年来,研究室承担国家科技重大专项课题、863课题、973课题、总公司及有限公司综合科研  相似文献   

4.
介绍了流化床富氧焚烧含油污泥技术的流程和优势,计算了富氧焚烧含油污泥系统主要设备的电耗和技术经济指标。流化床富氧焚烧含油污泥技术可实现烟气及其他污染物零排放,产生的蒸汽可直接供应油田生产和生活使用,产生的液态CO2可直接用于油井驱油,烟气中的SO2和NOx可转化为硫酸和硝酸。采用日处理200 t含油污泥的流化床锅炉年处理含油污泥量约73 kt,每年减少排污费7 300万元;锅炉年产蒸汽量约177 kt,每年节约蒸汽费用1 380.6万元,合计每年节约成本8 680.6万元。回收得到质量分数为40%的稀硫酸5.56 t/d,质量分数为37%的硝酸0.708 t/d,年回收CO2约99 kt。  相似文献   

5.
孙云 《化工环保》2004,24(6):466-466
目前,我国部分油田采用了聚合物(PAM)驱油的三次采油技术,取得了较好的增油效果。但是在PAM驱油废水的处理中,PAM驱油废水的水质与水驱油废水的水质有很大的差别。PAM驱油废水在:PAM存在下,其含油量和粘度随PAM浓度的增加而增加,PAM分子集中在油水界面上,与乳化剂分子一起形成较大强度和良好弹性的复合膜,W/O和O/W混合乳层加厚,在分离和电脱水过程中使得油水分离速度减慢,破乳剂破乳效果变差。采用常规处理工艺和水处理剂处理这种废水,达不到回注或排放标准(含油量小于10mg/L)。  相似文献   

6.
正海洋石油高效开发国家重点实验室提高采收率研究室成立于2004年7月。研究室以高速高效开发油气藏、提高油气采收率为主线,先后开展了聚合物驱、高效复合驱、稠油活化水驱、深部调剖、多枝导流适度出砂、稠油热采、气驱、微生物采油、压裂等多项重大和关键技术攻关,指导并协助油田矿场试验,解决了一系列生产现场的重要技术难题,基本形成了海上稠油聚合物驱油技术体系。近年来,研究室承担国家科技重大专项课题、863课题、973课题、总公司及有限公司综合科研项目、生产类项目等40多项。近五年累计发表论文200余篇,获得授权专利近70项,登记软件著作10  相似文献   

7.
火电厂CO2减排技术主要包括燃烧前处理、燃烧中减排及燃烧后捕集三类。介绍了IGCC、富氧燃烧、胺吸收法、生物法等CO2捕集与封存技术,分析其存在问题及应用前景。  相似文献   

8.
陈文娟  靖波  胡科  张健 《化工环保》2017,37(2):227-231
为了回注处理海上油田含油污泥,将其与聚合物溶液混合,制备聚合物驱调剖体系。系统评价了含油污泥对污泥-聚合物混合液的溶液性能、使用性能及驱油效果的影响。实验结果表明:当含油污泥浓度小于300 mg/L时,油泥颗粒的粒径范围为0.1~100μm,d_(90)为40~60μm,污泥-聚合物混合液的黏度、抗剪切及抗老化稳定性均得到增强,注入性不受显著影响,阻力系数及残余阻力系数略有增加;当采用油泥浓度为100 mg/L的污泥-聚合物混合液进行驱油实验时,聚驱采收率增幅为7.26百分比,然而含油污泥浓度的进一步升高对提高采收率并不利。  相似文献   

9.
N-甲基二乙醇胺-二乙醇胺复合溶液脱除采出气中的CO2   总被引:1,自引:0,他引:1  
结合中国石化胜利油田CO2驱现场情况,采用耐压实验装置模拟CO2驱采出气.在中压条件下对N-甲基二乙醇胺(MDEA)及MDEA与二乙醇胺(DEA)的复合溶液脱除模拟采出气中CO2的效果进行了实验研究,对吸收饱和液进行了再生实验.在模拟采出气中V(CH4):V(CO2)=3:7、反应温度为70.0℃、反应压力为0.5 MPa、MDEA-DEA复合溶液中MDEA质量分数为40%、DEA质量分数为2%的条件下,CO2吸收体积为48.429 71 L,再生温度为106.0℃,再生能耗为0.010 12 kW·h/L,再生率为98.84%.  相似文献   

10.
徐强 《化工环保》2024,(2):265-270
将CO2捕集、利用与封存(CCUS)技术与提高原油采收率(EOR)技术相结合,将捕集的CO2注入地下驱油,在提高采收率的同时实现碳封存。CCUS-EOR项目的完整流程包括捕集压缩、运输、驱油、回注等多个环节。本文将CCUS-EOR全流程视为一个整体,通过剖析CO2驱与常规水驱开发成本构成差异,建立适宜的CCUS-EOR项目全成本经济评价体系,确定捕集成本、运输成本、驱油成本的取值依据,推导出考虑碳减排收益的盈亏平衡模型,满足CCUS-EOR项目快速评价、辅助决策需求。  相似文献   

11.
金劲松  杨毅 《化工环保》2011,(2):140-143
提出了水域泄漏油品回收技术的装备需求,介绍了水域泄漏油品问收处理措施.采用拦油栅来控制漂浮在水上的油品,将泄漏油品集中在相对较小的区域内,并使水面的浮油层加厚,然后使用人工或机械对泄漏油品进行回收.对于水域中的少量泄漏油品,采用吸油材料来进行吸附.在油膜较薄,难以用机械方法回收的情况下,使用消油剂或固化剂进行处理.水域...  相似文献   

12.
考虑离散油滴在油田废水除油过程中发生的油滴碰撞聚结现象,模拟得出斜板除油器内全部油滴的动态信息,用于斜板除油器除油效率的计算.对矩形同向流斜板除油过程的模拟研究表明:油滴的碰撞聚结会增加斜板除油的效率;当废水的原始含油浓度增大时,斜板除油的效率会增大,碰撞聚结对除油效率提高的影响也越大;废水流动速度提高及斜板的倾斜角度增加均会使斜板的除油效率降低,但此时油滴碰撞聚结对除油效率的影响仍很明显.  相似文献   

13.
研究了采用柴油低温临界吸收法回收装车挥发油气的效果。实验结果表明:按装车挥发油气中的总烃体积分数为20.88%、装车挥发油气流量为280 m3/h、年运行时间为2 668 h计,装置年回收油气量为291 t,装置年最大运行功率为206.770 MW,装置投资回收期为3 a;处理后净化气中的总烃体积分数为1.24%,排放质量浓度低于25 g/m3,油气回收率达95%。处理后净化气满足GB 20950—2007《储油库大气污染物排放标准》,取得了较好的环保效益和经济效益。  相似文献   

14.
旋流萃取分离技术处理石化电脱盐废水   总被引:1,自引:0,他引:1       下载免费PDF全文
陈永强  龚小芝  陈发 《化工环保》2015,35(3):297-299
采用旋流萃取分离技术处理某炼油厂常减压装置电脱盐废水(初始废水含油量约为5 000 mg/L),优化了废水除油的工艺条件。试验结果表明,废水除油的最佳工艺条件为:旋流萃取分离机中心转子的转速960 r/min、废水流量2 000 L/h、废水温度80℃。废水经旋流萃取分离后,废水的含油量小于200 mg/L,废水除油效果较好;分离后油相的含水量约为0.1%(w),盐质量浓度小于20 mg/L,可回注到常减压装置原料罐循环利用。对于2 Mt/a的常减压装置,采用旋流萃取分离技术后,每年可减少支出100.4万元。  相似文献   

15.
废油脂制备生物柴油的清洁生产工艺   总被引:1,自引:0,他引:1  
在固定床反应器中,采用自制固体催化剂催化废油脂与甲醇发生酯交换反应制备生物柴油。最佳反应条件为:甲醇与废油脂摩尔比6,液态空速2h,反应温度290℃。废油脂预处理简单,酸值为180mg/g时,生物柴油的产率可达85%。所制备的,仨物柴油各项物性数据均符合我国轻柴油的标准,也完全达到德国和美国生物柴油的指标要求。该生物柴油制备方法属清洁生产工艺,无废水产生。  相似文献   

16.
潘一  王斅  杨双春  赵亚东  赵旸 《化工环保》2014,35(3):224-229
油砂开采面临的最大挑战是尾砂的处理以及如何提高尾砂油的回收率。结合国内外最新研究及实践成果,总结了尾砂的沉降、脱水、脱油和废弃物的处理方式,以及可用于提高尾砂油回收率的表面活性剂、碱剂、热解、超声波等方法,为尾砂的无害化处理提供了理论参考。  相似文献   

17.
The addition of lipid wastes to the digestion of swine manure was studied as a means of increasing biogas production. Lipid waste was obtained from a biodiesel plant where used cooking oil is the feedstock. Digestion of this co-substrate was proposed as a way of valorising residual streams from the process of biodiesel production and to integrate the digestion process into the biorefinery concept.Batch digestion tests were performed at different co-digesting proportions obtaining as a result an increase in biogas production with the increase in the amount of co-substrate added to the mixture. Semi-continuous digestion was studied at a 7% (w/w) mass fraction of total solids. Co-digestion was successful at a hydraulic retention time (HRT) of 50 d but a decrease to 30 d resulted in a decrease in specific gas production and accumulation of volatile and long chain fatty acids. The CH4 yield obtained was 326 ± 46 l/kg VSfeed at an HRT of 50 d, while this value was reduced to 274 ± 43 l/kg VSfeed when evaluated at an HRT of 30 d. However these values were higher than the one obtained under batch conditions (266 ± 40 l/kg VSfeed), thus indicating the need of acclimation to the co-substrate. Despite of operating at low organic loading rate (OLR), measurements from respirometry assays of digestate samples (at an HRT of 50 d) suggested that the effluent could not be directly applied to the soil as fertiliser and might have a negative effect over soil or crops.  相似文献   

18.
采用热重差热分析法和傅里叶变换红外光谱分析联用的方法(TG-FTIR)研究淬火油泥(QOS)的热解过程,解析了热解过程的动力学特性,分析了其中的矿物油(MO)和残渣(SR)在QOS热解过程中的相互作用。实验结果表明:QOS热解过程包含油分热解阶段和矿物质分解阶段;低温段热解温度为150~520 ℃,高温段热解温度为800~980 ℃;SR的热解过程分为油分热解反应和残渣中Fe2O3的还原反应;MO的热解过程只有轻质油分的挥发和重质油分的热解。FTIR表征结果显示:QOS热解过程析出的气体主要为CO2、CO和有机化合物;SR热解过程中CO2的特征峰强度高于其他气体的特征峰强度;MO热解过程中烷烃的特征峰强度高于其他气体的特征峰强度,且MO主要以轻质油分为主。在QOS的热解过程中,初温~480 ℃时,SR所含的Fe2O3对MO的热解起促进作用,300 ℃左右时促进效果最明显。  相似文献   

19.
在固体酸催化剂作用下,用环己烷氧化制备环己酮的副产物——酸性油和轻质油进行酯化反应,制备了羧酸混合酯,酯化反应的最佳工艺条件:n(C4-C5醇):n(有机羧酸)=1.2:1,催化剂质量分数为1.5%,反应温度为110-160℃,反应时间为5h。经应用评价结果表明,该羧酸混合酯是一种性能优异的选煤浮选剂。  相似文献   

20.
Dehalogenation is a key technology in the feedstock recycling of mixed halogenated waste plastics. In this study, two different methods were used to clarify the effectiveness of our proposed catalytic dehalogenation process using various carbon composites of iron oxides and calcium carbonate as the catalyst/sorbent. The first approach (a two-step process) was to develop a process for the thermal degradation of mixed halogenated waste plastics, and also develop dehalogenation catalysts for the catalytic dehydrochlorination of organic chlorine compounds from mixed plastic-derived oil containing polyvinyl chloride (PVC) using a fixed-bed flow-type reactor. The second approach (a single-step process) was the simultaneous degradation and dehalogenation of chlorinated (PVC) and brominated (plastic containing brominated flame retardant, HIPS–Br) mixed plastics into halogen-free liquid products. We report on a catalytic dehalogenation process for the chlorinated and brominated organic compounds formed by the pyrolysis of PVC and brominated flame retardant (HIPS–Br) mixed waste plastics [(polyethylene (PE), polypropylene (PP), and polystyrene (PS)], and also other plastics. During dehydrohalogenation, the iron- and calcium-based catalysts were transformed into their corresponding halides, which are also very active in the dehydrohalogenation of organic halogenated compounds. The halogen-free plastic-derived oil (PDO) can be used as a fuel oil or feedstock in refineries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号