首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The deposition of atmospheric tetrachlorobenzene, pentachlorobenzene, hexachlorobenzene, α-HCH, γ-HCH, DDT, DDE and the PCB congeners 52, 101, 138, 153 and 180 to spruce needles (Picea abies) was estimated for a period of 9 months. Accumulation in spruce as a result of dry gaseous deposition, particle bound deposition and wet deposition was calculated on the basis of the corresponding deposition rates and the compounds’ concentrations in the different atmospheric compartments. The comparison of the calculated values with the concentrations of the compounds measured in 9-month-old spruce needles showed that for many compounds each deposition pathway could explain a large part of the concentrations found in the needles.  相似文献   

2.
Rooted cuttings of clonal Sitka spruce (Picea sitchensis (Bong.) Carr.) were grown from April to October in 1 m long tubes sunk into the ground inside open top chambers. The same experiment was repeated in each of two consecutive years using a different clone of Sitka spruce each year. Air was either passed directly into the chambers (ambient air) or passed over charcoal filters which removed the majority of gaseous pollutants before entering the chambers (filtered air). Ambient pollution did not appear to influence the growth of Sitka spruce at least over the experimental period used. No significant differences were found between plants exposed to ambient or filtered air in terms of shoot and root dry mass, needle dry mass, root length, carbohydrate content of roots and needles, and in the percentage of meristematic cells close to the apex in each phase or interphase or undergoing mitosis.  相似文献   

3.
We examined PAH uptake by Norway spruce needles following the emergence of new buds in spring 2004–June 2005. Atmospheric PAH concentrations (gaseous phase and particle-bound) were monitored during this period, and PAH concentrations from these three environmental media were then used to calculate deposition and transfer velocities. Benzo(a)pyrene was found almost exclusively associated to particles and thus was used to determine a particle-bound deposition velocity of 10.8 m h?1. PAHs present in both compartments had net gaseous transfer velocities ranging from negligible values to 75.6 m h?1 and correlated significantly with log KOA. The loss velocities thereafter calculated were found to be higher for more volatile PAHs. Using the calculated average atmospheric PAH concentrations and deposition velocities, it was thus possible to model PAH uptake by vegetation through time. We demonstrate that this approach can be used to determine deposition velocities without the use of a surrogate surface. In considering both particulate-bound and gaseous deposition processes this model can be used not only to study air–foliage exchange of semi-volatile organic compounds, but also to illustrate the relative contribution of gaseous deposition and particulate-bound deposition in the overall atmospheric vegetation uptake of semi-volatile organic compounds.  相似文献   

4.
We studied the indoor penetration of ambient air malodorous sulfur compounds released by pulp mills. The indoor and outdoor concentrations were simultaneously measured with automatic SO2 analyzers. The filtering effect of three different materials connected to a gaseous filter unit was tested during six study periods. The tested materials were Sorbixofil® based on gypsum impregnated by KMnO4 Purafil® based on Al2O3, both absorbing sulfur compounds by oxidation, and carbonized tissue. The periods lasted from 14 to 88 days. The results indicated that malodorous sulfur air pollutants penetrated indoors effectively, but after some delay because the dilution was slow. In a comparison of different filter materials, Purafil® was the most effective, producing low indoor concentrations. The study concludes that people living near pulp mills are exposed to substantial amounts of malodorous air pollutants, both indoors and outdoors. This exposure can be reduced by using gaseous sulfur sensitive filter materials connected to a controlled ventilation system.  相似文献   

5.
The nutritional status of needles from Sitka spruce, Norway spruce and Scots pine in a total of 108 stands was assessed. There was little evidence of nutritional deficiency, although potassium levels were frequently quite low. Analysis of some heavy metals (lead and copper) failed to reveal any likely toxicity problems. Sulphur, nitrogen and iron levels in/on the foliage were all related to various measures of sulphur and nitrogen pollution, determined using improved deposition models that take into account cloud deposition and the seeder-feeder mechanism. The analysis strongly suggested that direct air pollution has a greater effect on sulphur, nitrogen and iron foliar analyses than indirect pollution (wet deposition). The relationships were identified for levels of pollution that were generally lower than those seen in traditional gradient studies.  相似文献   

6.
Gaseous emissions of combusted electronic scrap, PVC, carpet and wood were monitored for polycyclic aromatic hydrocarbons (PAHs) by simultaneous use of semipermeable membrane devices (SPMDs) and shoots of spruce needles (Picea abies). It was found that phenanthrene, acenaphthylene and fluorene were the dominating PAHs in all samples. SPMDs and needles mainly sequestered PAH associated with the vapor phase. Particle-bound PAHs were only detected in small amounts, at which the needles tended to uptake more of these compounds in comparison to the SPMDs. Nevertheless, the logarithm of the concentrations of PAHs analyzed in both passive samplers after the same sampling period exhibited a significant linear correlation with correlation coefficients larger than 0.8073. SPMDs and spruce needles can complement each other in passive air sampling for compounds with a preference to the gas phase rather than aerosols.  相似文献   

7.
The contaminated air with burning plastic floor and electronic scrap was monitored with semipermeable membrane devices (SPMDs) and fresh unpolluted spruce needles at the same time for polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) and polychlorinated biphenyls (PCBs). It was found that there were more polychlorinated dibenzofurans (PCDFs) than polychlorinated dibenzo-p-dioxins (PCDDs) collected from contaminated air. The total amounts of PCBs were much higher than that of PCDD/Fs, but the contribution of them to the WHO-TEQ was less than that of PCDD/Fs. Triolein-containing SPMDs can absorb much more PCDD/Fs and PCBs than spruce needles when they were exposed in contaminated air simultaneously. The logarithm of the concentrations of PCDD/Fs and PCBs in SPMDs and in spruce needles at the same sampling time exhibited a significant linear correlation, the correlation coefficients were larger than 0.86 for PCDD/Fs and 0.92 for PCBs. SPMDs and spruce needles are effective passive air sampler for PCDD/Fs and PCBs. SPMDs and spruce needles can complement each other in passive air sampling.  相似文献   

8.

Background, aim, and scope  

Passive air sampling survey of the Central and Eastern Europe was initiated in 2006. This paper presents data on toxic organic compounds such as polychlorinated biphenyls (PCB 28, 52, 101, 118, 153, 138, and 180), hexachlorobenzene (HCB), pentachlorobenzene (PeCB), hexachlorocyclohexane compounds (α-HCH, β-HCH,γ-HCH, δ-HCH), and dichloro-diphenyl-trichloroethane (DDT) compounds (p,p′DDE, p,p′DDD, p,p′DDT, o,p′DDE, o,p′DDD, and o,p′DDT) determined in ambient air and soil samples collected at Estonian monitoring stations.  相似文献   

9.
The atmospheric contamination levels of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) were evaluated from the analysis of pine needles in South Korea. Pine needles were collected from 30 sampling points at five main cities in South Korea (Busan, Daegu, Gwangju, Changwon and Jeju island). The highest concentrations of PCDDs/DFs (2.19–26.88 pg I-TEQ/g of dry weight) were measured at Busan, where is the city of the highest population density and traffic volume among five cities. The lowest concentration was detected at Jeju with 0.62 pg I-TEQ/g dry weight, suggesting Jeju could be an environmental background area in Korea. The dominant homologues of PCDDs/DFs in pine needles were the lower chlorine-substituted compounds such as tetra CDDs and CDFs, and the distribution ratios of PCDDs/DFs decreased with increase of the number of chlorine substituents. Homologue profiles of pine needle samples were similar to PCDDs/DFs profiles of the vapor phase in the ambient air, and thus the pine needles absorbed the vapor phase of PCDDs/DFs from air. Results suggested that pine needles could be used as an indicator of the atmospheric contamination for PCDDs/DFs in Korea.  相似文献   

10.
The effects of ambient air compared to filtered air on the reproduction of females and mean relative growth rate (MRGR) of nymphs of C. pilicornis on Norway spruce was determined in open-top chambers at Wengernalp in the Swiss Alps (1900 m a.s.l.) and at Sch?nenbuch near the city of Basle (400 m a.s.l.). The ambient concentration of O(3), the main pollutant at both sites, varied between 45 and 120 microg m(-3) (24-h mean) at both sites. A 5-8 day exposure of spruce saplings to ambient compared to filtered air enhanced the MRGR of nymphs of C. pilicornis of local and northern origins at Sch?nenbuch. The cumulative numbers of offspring of C. pilicornis were higher in ambient air chambers than in filtered air chambers at Sch?nenbuch, but not at Wengernalp. Filtration of ambient air did not affect significantly the levels of total free amino acids or reducing sugars in phloem sap or concentration of total phenolics in needles at the end of the growing season. The results suggest that ambient air with elevated O(3) and with high daily fluctuations, as it can be observed in Sch?nenbuch, affects aphid performance on conifers more than ambient air with also elevated, but rather constant levels of O(3), as it can be observed in mountain forest areas.  相似文献   

11.
The effects of long-term enhanced UV-B radiation on growth and secondary compounds of two conifer species were studied in an outdoor experiment. Scots pine (Pinus sylvestris) seedlings were exposed for two growing seasons and Norway spruce (Picea abies) seedlings for three growing seasons to supplemental UV-B radiation, corresponding to a 30% increase in ambient UV-B radiation. The experiment also included appropriate controls for ambient and increased UV-A radiation. Enhanced UV-B did not affect the growth of the conifer seedlings. In addition, neither the concentrations of terpenes and phenolics in the needles nor the concentrations of terpenes in the wood were affected. However, in the UV-A control treatment the concentrations of diterpenes in the wood of Scots pine decreased significantly compared to the ambient control. Apparently, a small increase in UV-B radiation has no significant effects on the secondary compounds and growth of Scots pine and Norway spruce seedlings.  相似文献   

12.
Rooted cuttings of hybrid Populus (DN34, Populus deltoides x nigra) were grown outdoors in pots in open-top chambers at Ithaca, NY (74.5 degrees W, 42.5 degrees N), during 1988 and 1989 (experiment 1) and during 1989 and 1990 (experiment 2). Ambient air was passed through charcoal filters to produce a 0.5 times ambient ozone treatment, and ozone generated from oxygen was added to produce one and two times ambient ozone treatments. In experiment 1, treatments were applied for 8-12 h each day for 112 days of the 1988 growing season, then the plants were grown outdoors with ambient ozone in 1989. In experiment 2, treatments were applied for 9 h each day for 98 days of the 1989 growing season, then the plants were grown outdoors with ambient ozone in 1990. Chronic exposure to ozone caused the following changes (statistically significant in one or both experiments at p<0.05): (1) earlier leaf abscission, (2) decreased stem basal diameter, (3) decreased stem mass, (4) decreased internode length, (5) decreased shoot height p=0.005, and (6) decreased leaf size in the growing season following ozone treatment. There was also strong evidence that ozone increased the number of leaves produced p=0.055. Finally, there was some evidence that ozone increased the ratio of shoot mass to root mass p=0.093.  相似文献   

13.
Assessment of yield losses in tropical wheat using open top chambers   总被引:2,自引:0,他引:2  
The present study deals with the evaluation of effects of ambient gaseous air pollution on wheat (Triticum aestivum L. var. HUW-234) growing in a suburban area situated in eastern Gangetic plain of India, using open top chambers. Eight hourly air monitoring was conducted for ambient concentrations of SO2, NO2 and O3 in filtered chambers (FCs), non-filtered chambers (NFCs) and open plots (OPs). Various morphological, physiological and biochemical parameters were assessed during different developmental stages and finally yield parameters were quantified at the time of harvest.Mean concentrations of SO2, NO2 and O3 were 8.4, 39.9 and 40.1 ppb, respectively during the experiment in NFCs. Concentrations of SO2, NO2 and O3 reduced by 74.6%, 84.7% and 90.4%, respectively in FCs as compared to NFCs. Plants grown in FCs showed higher photosynthetic rate, stomatal conductance, chlorophyll content and Fv/Fm ratio as compared to the plants in NFCs and OPs. Lipid peroxidation, proline, total phenol and ascorbic acid contents and peroxidase activity were higher in plants grown in NFCs. There were improvements in morphological parameters of plants growing in FCs as compared to those in NFCs and OPs. Yield of plants also increased significantly in FCs as compared to those ventilated with ambient air (NFCs) or grown in OPs. During the vegetative phase, NO2 concentrations were higher than O3, but O3 became dominant pollutant during the time of grain setting and filling. The study concludes that O3 and NO2 are the main air pollutants in the sub-urban areas causing significant yield reductions in tropical wheat plants.  相似文献   

14.
To investigate the characteristics of mercury exchange between soil and air in the heavily air-polluted area, total gaseous mercury (TGM) concentration in air and Hg exchange flux were measured in Wanshan Hg mining area (WMMA) in November, 2002 and July–August, 2004. The results showed that the average TGM concentrations in the ambient air (17.8–1101.8 ng m−3), average Hg emission flux (162–27827 ng m−2 h−1) and average Hg dry deposition flux (0–9434 ng m−2 h−1) in WMMA were 1–4 orders of magnitude higher than those in the background area. It is said that mercury-enriched soil is a significant Hg source of the atmosphere in WMMA. It was also found that widely distributed roasted cinnabar banks are net Hg sources of the atmosphere in WMMA. Relationships between mercury exchange flux and environmental parameters were investigated. The results indicated that the rate of mercury emission from soil could be accelerated by high total soil mercury concentration and solar irradiation. Whereas, highly elevated TGM concentrations in the ambient air can restrain Hg emission from soil and even lead to strongly atmospheric Hg deposition to soil surface. A great amount of gaseous mercury in the heavily polluted atmosphere may cycle between soil and air quickly and locally. Vegetation can inhibit mercury emission from soil and are important sinks of atmospheric mercury in heavily air-polluted area.  相似文献   

15.
A sampling system and analytical procedure for determining PCDD/Fs, PCBs, HCB, and PAHs in ambient air was tested. The reproducibility of the concentrations and the gas/particle partitioning was ± 10% for most compounds. The removal of gaseous compounds on the XAD resin trap was greater than 99%. The adsorption of gaseous substances on the glass fiber filter was negligible for compounds primarily found in the gas phase, but could not be ruled out for compounds found mainly on particles.  相似文献   

16.
Indoor and outdoor concentrations of HCl, HNO3, HCOOH and CH3COOH were determined in two medieval churches in Cyprus, during July 2003 and March 2004. The high air exchange rate through the open windows and doors led to lower indoor, compared to outdoor, acid concentrations in July 2003. Indoor pollutant emissions and a low air exchange rate resulted in higher indoor compared to outdoors acid concentrations in both churches during March 2004. Indoor to outdoor inorganic acid ratios were higher than the corresponding indoor to outdoor organic acid ratios during July 2003, whilst the opposite trend was observed during March 2004. Direct acid emission from candle burning appears to play a major role in the observed indoor acid concentrations. Emissions of volatile organic compounds from other sources, like humans, cleaning products and incense, led also to formation or depletion of the gaseous acids via homogeneous photochemical, heterogeneous and dark reaction sequences. Chemical reaction pathways were extensively investigated and appear to explain the observed results. The apparent indoor acid deposition velocities ranged between 0.05 and 0.15 cm s−1.  相似文献   

17.
Needles of 20-year-old Scots pine (Pinus sylvestris L.) saplings were studied in an ultraviolet (UV) exclusion field experiment (from 2000 to 2002) in northern Finland (67 °N). The chambers held filters that excluded both UV-B and UV-A, excluded UV-B only, transmitted all UV (control), or lacked filters (ambient). UV-B/UV-A exclusion decreased nitrate reductase (NR) activity of 1-year-old needles of Scots pines compared to the controls. The proportion of free amino acids varied in the range 1.08-1.94% of total proteins, and was significantly higher in needles of saplings grown under UV-B/UV-A exclusion compared to the controls or UV-B exclusion. NR activity correlated with air temperature, indicating a “chamber effect”. The study showed that both UV irradiance and increasing temperature are significant modulators of nitrogen (N) metabolism in Scots pine needles.  相似文献   

18.
The applicability of tube-like diffusion samplers for the determination of ambient air concentrations of sulfur dioxide and nitrogen dioxide was evaluated. The diffusion tubes were made from polyethylene and triethanolamine was used as an absorbent. Artifacts due to the deposition of gaseous or particulate compounds to the tube walls were considered. With respect to sampling of nitrogen dioxide no interference by the tube walls could be observed. The determination of sulfur dioxide was strongly biased by the collection of particulate sulfate at the entrance part of the tube and along the tube walls. This effect leads to a large overestimation of the average air concentrations compared with fluorescence monitors.  相似文献   

19.
The Citrus genus includes a large number of species and varieties widely cultivated in the Central Valley of California and in many other countries having similar Mediterranean climates. In the summer, orchards in California experience high levels of tropospheric ozone, formed by reactions of volatile organic compounds (VOC) with oxides of nitrogen (NOx). Citrus trees may improve air quality in the orchard environment by taking up ozone through stomatal and non-stomatal mechanisms, but they may ultimately be detrimental to regional air quality by emitting biogenic VOC (BVOC) that oxidize to form ozone and secondary organic aerosol downwind of the site of emission. BVOC also play a key role in removing ozone through gas-phase chemical reactions in the intercellular spaces of the leaves and in ambient air outside the plants. Ozone is known to oxidize leaf tissues after entering stomata, resulting in decreased carbon assimilation and crop yield. To characterize ozone deposition and BVOC emissions for lemon (Citrus limon), mandarin (Citrus reticulata), and orange (Citrus sinensis), we designed branch enclosures that allowed direct measurement of fluxes under different physiological conditions in a controlled greenhouse environment. Average ozone uptake was up to 11 nmol s?1 m?2 of leaf. At low concentrations of ozone (40 ppb), measured ozone deposition was higher than expected ozone deposition modeled on the basis of stomatal aperture and ozone concentration. Our results were in better agreement with modeled values when we included non-stomatal ozone loss by reaction with gas-phase BVOC emitted from the citrus plants. At high ozone concentrations (160 ppb), the measured ozone deposition was lower than modeled, and we speculate that this indicates ozone accumulation in the leaf mesophyll.  相似文献   

20.
The aim of the study was determination of air pollution impact of the copper smelter in Bor and its surroundings (Serbia) by assessing the suitability of birch (Betula pendula Roth.) and spruce (Picea abies L.) for the purposes of biomonitoring and comparing it with previously published data from the same study area. The concentrations of Cu, Zn, Pb and Mn in leaves/needles, branches, roots and soil were determined. Sampling was performed during 2009 in two zones with high load of air pollution due to copper mining and smelting activities, and one background zone. Metal accumulation and translocation was evaluated in terms of biological factors. In addition, plant enrichment factor was calculated. According to the results, plant foliage was not enriched through soil, which indicates absorption from the air, with both species acting as excluders of Cu, Pb, Zn and Mn. Leaves were more enriched with all the metals than needles, indicating a better response of birch to airborne pollution than spruce. Cluster analysis showed different level of pollution at the sites, while correlations between Cu and Pb obtained by Principal Component Analysis indicated their anthropogenic origin. Regarding previously published results, beside birch leaves, pine needles (which showed higher level of response to pollution compared to linden leaves) could be applied in air biomonitoring surveys near copper smelters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号