首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sun Q  Wang XR  Ding SM  Yuan XF 《Chemosphere》2005,60(1):22-31
Phytochelatins (PCs) have been proposed as a potential biomarker for metal toxicity. In this study, cadmium (Cd) toxicity, PCs production and their relationship in wheat under Cd stress were examined using various exogenous organic chelator-buffered nutrient solutions. Single Cd stress produced strong toxic effects, as indicated by decreases of growth parameters, high level of lipid peroxidation in leaf and overproduction of PCs in root. Exogenous organic chelators with proper dose more or less reduced Cd toxicity by increasing growth parameters and decreasing lipid peroxidation in leaves. Of organic chelators (EDTA, DTPA, citric acid, malic acid and oxalic acid), EDTA was the most effective in decreasing Cd toxicity in plants, followed by DTPA and citric acid. Simultaneously, the concentrations of Cd-induced PCs in roots decreased, and the greatest decrease was caused by application of EDTA and DTPA. Linearly positive relationships were observed between Cd toxicity and root PCs concentrations under the influences of organic chelators, particularly EDTA, DTPA and citric acid. Furthermore, present results provide stronger evidence that PCs synthesis in plant cells was related to free Cd ion concentrations, not total Cd, and demonstrate that the levels of PCs production in plants correlated well with toxic effects caused by the bioavailable Cd levels.  相似文献   

2.
浮游球衣菌对Pb2+、Cu2+、Zn2+、Cd2+的吸附性能研究   总被引:8,自引:0,他引:8  
研究了浮游球衣菌(Sphaerotilus natans)在不同吸附条件下对溶液中Pb^2+、Cu^2+、Zn^2+、Cd^2+的吸附规律。结果表明,Sphaerotilus natans对这4种重金属离子均有一定的吸附作用,并在20min内达到吸附平衡,pH对吸附过程影响较大,pH为5.5时Sphaerotilus natans对这4种金属离子的吸附效果最好,Sphaerotilus natans对它们的吸附选择性为Pb^2+〉Cu^2+〉Zn^2+〉Cd^2+,Pb^2+、Cu^2+能部分置换出已被菌体吸附的Zn^2+、Cd^2+。HCI和EDTA溶液可有效地将金属离子从菌体上解吸下来,解吸后的菌体可重复使用。  相似文献   

3.
低浓度Pb2+、Cd2+对鲫鱼肝脏组织中 HSP70诱导的影响   总被引:3,自引:0,他引:3  
以鲫鱼(Carassius auratus)作为实验对象,经过40 d Pb2+、Cd2+不同浓度的暴露后,运用SDS-PAGE和Western Blotting方法检测鱼肝脏组织内应激蛋白HSP70的诱导表达情况.结果表明,在实验浓度下,与对照组相比,Pb2+、Cd2+对鱼肝脏内HSP70有显著的诱导(P<0.05),但在Cd2+浓度为0.2 mg/L有停止表达HSP70的现象,可能是由于浓度过高造成了组织病理损伤而破坏了诱导表达机制.实验还发现,在实验浓度低于国家渔业用水标准时,HSP70仍然表现为明显诱导(P<0.05),充分说明运用分子生物学指标要比传统的环境检测指标敏感,具有对污染物早期预警的作用.  相似文献   

4.
Potentials and drawbacks of chelate-enhanced phytoremediation of soils.   总被引:28,自引:0,他引:28  
Chelate-enhanced phytoremediation has been proposed as an effective tool for the extraction of heavy metals from soils by plants. However, side-effects related to the addition of chelates, e.g. metal leaching and effects on soil micro-organisms, were usually neglected. Therefore, greenhouse and lysimeter studies were conducted to study the phytoremedation potential of EDGA and citric acid and to evaluate its effects on microbial activity and leaching of Cd, Zn Cu and Pb. Grass, lupine and yellow mustard were grown on a moderately polluted acid (pH 4.5) sandy soil that contained 2 mg kg(-1) Cd and 200 mg kg(-1) Zn. Citric acid appeared to be degraded microbially within a few days after addition which limited its potential for long-lasting remediation studies. EDGA enhanced metal solubility but plant uptake did not increase accordingly. The metal shoot:root ratio increased upon addition of EDGA but it also reduced the net shoot and root biomass production of both lupine and yellow mustard. Bacterial biomass was higher in both the citric and EDGA treated pots but bacterial activity remained unaffected. The number of microbivorous nematodes was greatly reduced upon addition of EDGA which was most likely related to the reduced biomass production and, to a smaller extent, to the changes in the composition of the available food. Furthermore, EDGA enhanced metal leaching in the lysimeter study which could lead to groundwater pollution. To prevent these unwanted side-effects, careful management of phytoremediation methods, therefore, seems necessary.  相似文献   

5.
Juwarkar AA  Nair A  Dubey KV  Singh SK  Devotta S 《Chemosphere》2007,68(10):1996-2002
This research focuses on column experiments conducted to evaluate the potential of environmentally compatible rhamnolipid biosurfactant produced by Pseudomonas aeruginosa strain BS2 to remove heavy metals (Cd and Pb) from artificially contaminated soil. Results have shown that di-rhamnolipid removes not only the leachable or available fraction of Cd and Pb but also the bound metals as compared to tap water which removed the mobile fraction only. Washing of contaminated soil with tap water revealed that approximately 2.7% of Cd and 9.8% of Pb in contaminated soil was in freely available or weakly bound forms whereas washing with rhamnolipid removed 92% of Cd and 88% of Pb after 36 h of leaching. This indicated that di-rhamnolipid selectively favours mobilization of metals in the order of Cd>Pb. Biosurfactant specificity observed towards specific metal will help in preferential elution of specific contaminant using di-rhamnolipid. It was further observed that pH of the leachates collected from heavy metal contaminated soil column treated with di-rhamnolipid solution was low (6.60-6.78) as compared to that of leachates from heavy metal contaminated soil column treated with tap water (pH 6.90-7.25), which showed high dissolution of metal species from the contaminated soil and effective leaching of metals with treatment with biosurfactant. The microbial population of the contaminated soil was increased after removal of metals by biosurfactant indicating the decrease of toxicity of metals to soil microflora. This study shows that biosurfactant technology can be an effective and nondestructive method for bioremediation of cadmium and lead contaminated soil.  相似文献   

6.
Heavy metal pollution is a severe environmental problem. Remediation of contaminated soils can be accomplished using environmental materials that are low cost and environmentally friendly. We evaluated the individual and combination effects of humic acid (HA), super absorbent polymer (SAP), zeolite (ZE), and fly ash composites (FC) on immobilization of lead (Pb) and cadmium (Cd) in contaminated soils. We also investigated long-term practical approaches for remediation of heavy metal pollution in soil. The biochemical and morphological properties of maize (Zea mays L.) were selected as biomarkers to assess the effects of environmental materials on heavy metal immobilization. The results showed that addition of test materials to soil effectively reduced heavy metal accumulation in maize foliage, improving chlorophyll levels, plant growth, and antioxidant enzyme activity. The test materials reduced heavy metal injury to maize throughout the growth period. A synergistic effect from combinations of different materials on immobilization of Pb and Cd was determined based on the reduction of morphological and biochemical injuries to maize. The combination of zeolite and humic acid was especially effective. Treatment with a combination of HA?+?SAP?+?ZE?+?FC was superior for remediation of soils contaminated with high levels of Pb and Cd.  相似文献   

7.
The rational for the study was to review the literature on the toxicity and corresponding mechanisms associated with lead (Pb), mercury (Hg), cadmium (Cd), and arsenic (As), individually and as mixtures, in the environment. Heavy metals are ubiquitous and generally persist in the environment, enabling them to biomagnify in the food chain. Living systems most often interact with a cocktail of heavy metals in the environment. Heavy metal exposure to biological systems may lead to oxidation stress which may induce DNA damage, protein modification, lipid peroxidation, and others. In this review, the major mechanism associated with toxicities of individual metals was the generation of reactive oxygen species (ROS). Additionally, toxicities were expressed through depletion of glutathione and bonding to sulfhydryl groups of proteins. Interestingly, a metal like Pb becomes toxic to organisms through the depletion of antioxidants while Cd indirectly generates ROS by its ability to replace iron and copper. ROS generated through exposure to arsenic were associated with many modes of action, and heavy metal mixtures were found to have varied effects on organisms. Many models based on concentration addition (CA) and independent action (IA) have been introduced to help predict toxicities and mechanisms associated with metal mixtures. An integrated model which combines CA and IA was further proposed for evaluating toxicities of non-interactive mixtures. In cases where there are molecular interactions, the toxicogenomic approach was used to predict toxicities. The high-throughput toxicogenomics combines studies in genetics, genome-scale expression, cell and tissue expression, metabolite profiling, and bioinformatics.  相似文献   

8.
Tu C  Zheng CR  Chen HM 《Chemosphere》2000,41(1-2):133-138
A three-month incubation study was undertaken to examine the influence of N, P and K on the various forms (soluble plus exchangeable (SE), weakly specifically adsorbed (WSA), Fe-Mn oxides bound (OX), organic matter complexed (OM) and residual fractions (RES)) of lead (Pb) and cadmium (Cd) in a red soil. Application of urea at the rate of 200 mg N/kg significantly lowered the SE fraction, but raised the WSA or OX fraction of both metals. Supply of 80 mg P/kg caused a decrease in the SE fraction of the two metals. The WSA fraction of Pb was reduced, whereas that of Cd increased by adding P. However, addition of 100 mg K/kg led to an increase in the SE fraction, but a decrease in the WSA fraction of Pb and Cd. Applying chemical fertilizers had no significant consistent influences on the other fractions of metals. These findings suggest that in heavy metal contaminated red soil, applying fertilizers does not only provide plant nutrients, but may also change the speciations and thus biovailability of heavy metals.  相似文献   

9.
Genetic engineering of plants for phytoremediation is thought to be possible based on results using model plants expressing genes involved in heavy metal resistance, which improve the plant’s tolerance of heavy metals and accumulation capacity. The next step of progress in this technology requires the genetic engineering of plants that produce large amounts of biomass and the testing of these transgenic plants in contaminated soils. Thus, we transformed a sterile line of poplar Populus alba X P. tremula var. glandulosa with a heavy metal resistance gene, ScYCF1 (yeast cadmium factor 1), which encodes a transporter that sequesters toxic metal(loid)s into the vacuoles of budding yeast, and tested these transgenic plants in soil taken from a closed mine site contaminated with multiple toxic metal(loid)s under greenhouse and field conditions. The YCF1-expressing transgenic poplar plants exhibited enhanced growth, reduced toxicity symptoms, and increased Cd content in the aerial tissue compared to the non-transgenic plants. Furthermore, the plants accumulated increased amounts of Cd, Zn, and Pb in the root, because they could establish an extensive root system in mine tailing soil. These results suggest that the generation of YCF1-expressing transgenic poplar represents the first step towards producing plants for phytoremediation. The YCF1-expressing poplar may be useful for phytostabilization and phytoattenuation, especially in highly contaminated regions, where wild-type plants cannot survive.  相似文献   

10.
植物修复土壤重金属被普遍认为是清洁、经济的生物修复方法。为了提高生物修复土壤重金属污染的效率,在室内盆栽实验中添加柠檬酸作为螯合剂促进龙葵对重金属的吸收,并研究其生理活性的变化。结果表明:当添加柠檬酸浓度为10 nmol/kg时,龙葵生物量显著提高(P<0.05),各部分生物量表现为:茎>叶>根;随着柠檬酸浓度的增加,龙葵对重金属Cd的吸收量显著(P<0.05)增加,在10 nmol时总吸收量最大,为229.85μg/g DW;龙葵对Cd、Pb的富集系数均在柠檬酸浓度为5 nmol/kg时达到最大;Pb吸收量随柠檬酸浓度增加表现出先增大后减小的趋势;添加柠檬酸促进了龙葵对Cd的吸收,增强了抗氧化酶活性,而对Pb的吸收效果不明显。  相似文献   

11.
Mining activities represent a major source of environment contamination. The aim of this study was to evaluate the use of bees and ants as bioindicators to detect the heavy metal impact in post-mining areas. A biomonitoring programme involving a combination of honeybee hive matrices analysis and ant biodiversity survey was conducted over a 3-year period. The experimental design involved three monitoring stations where repeated sampling activities focused on chemical detection of cadmium (Cd), chrome (Cr) and lead (Pb) from different matrices, both from hosted beehives (foraging bees, honey and pollen) and from the surrounding environment (stream water and soil). At the same time, ant biodiversity (number and abundance of species) was determined through a monitoring programme based on the use of pitfall traps placed in different habitats inside each mining site. The heavy metal content detected in stream water from the control station was always below the analytical limit of quantification. In the case of soil, the content of Cd and Pb from the control was lower than that of mining sites. The mean heavy metal concentrations in beehive matrices from mining sites were mainly higher than the control, and as a result of regression and discriminant analysis, forager bee sampling was an efficient environmental pollution bioindicator. Ant collection and identification highlighted a wide species variety with differences among habitats mostly associated with vegetation features. A lower variability was observed in the polluted landfill characterised by lack of vegetation. Combined biomonitoring with forager bees and ants represents a reliable tool for heavy metal environmental impact studies.  相似文献   

12.
A field survey was conducted to investigate the present situation and health risk of arsenic (As), lead (Pb), cadmium (Cd), copper (Cu), and zinc (Zn) in soils and vegetables in a multi-metal mining area, Gejiu, China. Furthermore, three vegetables (water spinach, potato, and summer squash) containing high metal concentrations were selected to further analyze metal speciation. The results showed that the average concentrations of five metals in soil exceeded the limiting values, and their bioavailable concentrations were significantly positively correlated to the total ones. Heavy metals in the edible parts of vegetables also exceeded the corresponding standards. The leaves of pakchoi, peppermint, and coriander had a strong metal-accumulative ability and they were not suitable for planting. Except the residue forms, the main forms of metals in the edible parts of three selected vegetables were ethanol-, NaCl-, and HAc-extractable fractions for As, Pb, and Cd, respectively; however, Cu was mainly presented as NaCl-extractable and Zn as HAc-extractable fractions. A high proportion of ethanol-extractable As showed that As bioactivity and toxic effects were the highest. Although the total and bioavailable Cd were high in soil, its speciation in vegetables was mainly presented as HAc-extractable fraction, which has a relatively low bioactivity. Lead and arsenic were imposing a serious threat on the local residents via vegetable consumption.  相似文献   

13.
Bose S  Bhattacharyya AK 《Chemosphere》2008,70(7):1264-1272
The concentrations of different forms of Zn, Cu, Mn, Ni, Cd, Cr, Pb and Fe metals were determined for the roadside sludge collected from pickling-rolling and electroplating industrial area. In sludge the relative abundance of total heavy metals were Fe>Mn>Cr>Ni>Cu>Pb>Zn>Cd and DTPA-extractable metals were in the order--Fe>Ni>Mn>Cr>Cu>Zn>Pb>Cd. Pot-culture experiment was conducted in soils amended with sludge (0%, 10%, 20%, 30%), pretreated with lime (0%, 0.5% and 1%). The soils were alkaline in nature (pH>8.3) with organic carbon contents were 0.34% and 0.72%. The most abundant total and bio-available metal was Fe. Two wheat seedlings were grown in each pot containing 3kg sludge-amended or control soil and the experiment was conducted till harvesting. Application of sludge increased both total and bio-available forms of metals in the soils, while lime application decreased the bioavailability of heavy metals in sludge-amended soils. The content of organic carbon showed positive correlation with all metals except Zn, Cr and Pb. CEC also showed a strong positive correlation (R2>0.7) with Fe, Mn, Cu, Ni and Cd. Though wheat plants are not accumulators, the translocation efficiency was appreciably high. The translocation factor from shoot to grain was found smaller than that of root to shoot of wheat plants. This makes an implication that the heavy metal accumulation was proportionally lesser in grain than in shoot. In, 10% sludge with 0.5% lime-amended soils; each of these toxic heavy metals was found to be within permissible range (USEPA). Hence, on the basis of present study, the best possible treatment may be recommended.  相似文献   

14.
Spinach plants were grown in soil pots contaminated with increasing mixtures of lead, mercury, cadmium, and nickel salts. Plants in the control soil were grown in the absence of the heavy metals mixture. The elemental distribution of Cd, Ni, Pb, and Hg in the roots and leaves of Spinach (Spinacia Oleracea) was determined in two stages, Stage 1, after five weeks of plant growth and Stage 2, after 10 weeks with full growth. Under the influence of contamination of soil with the heavy metal mixtures, Hg was the most accumulated element in the root of the spinach plant with a concentration of 283 ppm recorded in the highest contaminated soil, followed by Cd at 148 ppm.  相似文献   

15.
Some plants have high ability to absorb heavy metals in high concentrations. In this study, Halimione portulacoides was tested in conjunction with citric acid, in order to evaluate the possible use of this plant in phytoremediation processes in salt marshes. Two different concentrations of chelator were used combined with two heavy metal concentrations. When 25microM of citric acid was applied, Cd uptake and translocation was enhanced while for Ni these processes were almost inhibited. Increasing citric acid concentration to 50microM, Ni absorption decreased by the roots while for Cd there was still an increase in root uptake. Analysing translocation with this concentration of chelator, a decreased metal content in the upper organs for both metals was observed. While for Cd an optimal concentration of 25microM of citric acid was observed for phytoremediative processes, for nickel neither concentrations of chelator showed advantages for application in this remediative method.  相似文献   

16.
The assessment of pollution in aquatic systems necessitates an accurate indication of toxicity of heavy metals for organisms and ecosystems. We used the stable nitrogen isotope 15N to estimate the influence of the heavy metals Cd, Pb and Zn on the synthesis of nitrogen-containing fractions in the aquatic moss Fontinalis antipyretica. This method permits conclusions concerning inhibitory effects of these heavy metals on the assimilation of nitrogen and the biosynthesis of amino acids and proteins. The moss was exposed to metal concentrations of 25-500 microM over a period of 5-10 days. 15N abundance of exposed plants was compared with that of control plants. Similar to a loss of vitality determined using a fluorometric assay, a decrease of the 15N abundance in the N fractions of Fontinalis antipyretica was measured in dependence on the metal concentration. Nevertheless, the individual inhibition by the distinct metals was different, so that the following order of toxicity was derived: Cd > Pb > Zn.  相似文献   

17.
Four samples of ombrotrophic peat were collected from each of 10 upland locations in a transect from the southern Pennines to the Highland Boundary Fault, a total distance of ca. 400 km. Bulk compositions and other properties were determined. Total contents of Al and heavy metals (Ni, Cu, Zn, Cd, Pb) were determined following digestion with hydrofluoric acid, and concentrations of metals extractable with dilute nitric acid were also measured. Supernatants obtained from aqueous extractions of the peat samples were analysed for pH, major cations and anions, dissolved organic carbon and dissolved metals, and concentrations of free metal ions (Al(3+), Ni(2+), etc.) were estimated by applying a chemical speciation model. Both total and HNO(3)-extractable metal concentrations varied along the transect, the highest values being found at locations close to industrial and former mining areas. The HNO(3)-extractable soil metal contents of Ni, Cu and Cd were appreciably lower than lowest-observed-effect-concentrations (LOEC) for toxicity towards microorganisms in acid, organic rich soils. However, the contents of Zn at two locations, and of Pb at five locations exceeded LOECs, suggesting that they may be exerting toxic effects in the peats. Soil solution concentrations of free heavy metal ions (Cu(2+), Zn(2+), Cd(2+), Pb(2+)) were substantially lower than LOECs for toxicity towards vascular plants, whereas concentrations of Al(3+) were near to toxic levels at two locations.  相似文献   

18.
Influence of organic acids on the transport of heavy metals in soil   总被引:9,自引:0,他引:9  
Schwab AP  Zhu DS  Banks MK 《Chemosphere》2008,72(6):986-994
Vegetation historically has been an important part of reclamation of sites contaminated with metals, whether the objective was to stabilize the metals or remove them through phytoremediation. Understanding the impact of organic acids typically found in the rhizosphere would contribute to our knowledge of the impact of plants in contaminated environments. Heavy metal transport in soils in the presence of simple organic acids was assessed in two laboratory studies. In the first study, thin layer chromatography (TLC) was used to investigate Zn, Cd, and Pb movement in a sandy loam soil as affected by soluble organic acids in the rhizosphere. Many of these organic acids enhanced heavy metal movement. For organic acid concentrations of 10mM, citric acid had the highest R(f) values (frontal distance moved by metal divided by frontal distance moved by the solution) for Zn, followed by malic, tartaric, fumaric, and glutaric acids. Citric acid also has the highest R(f) value for Cd movement followed by fumaric acid. Citric acid and tartaric acid enhanced Pb transport to the greatest degree. For most organic acids studied, R(f) values followed the trend Zn>Cd>Pb. Citric acid (10mM) increased R(f) values of Zn and Cd by approximately three times relative to water. In the second study, small soil columns were used to test the impact of simple organic acids on Zn, Cd, and Pb leaching in soils. Citric acid greatly enhanced Zn and Cd movement in soils but had little influence on Pb movement. The Zn and Cd in the effluents from columns treated with 10mM citric acid attained influent metal concentrations by the end of the experiment, but effluent metal concentrations were much less than influent concentrations for citrate <10mM. Exchangeable Zn in the soil columns was about 40% of total Zn, and approximately 80% total Cd was in exchangeable form. Nearly all of the Pb retained by the soil columns was exchangeable.  相似文献   

19.
Increased consciousness for safeguarding the aqueous environment has prompted a search for alternative technologies for the removal of toxic metal ions from aqueous solutions. In this regard, a wide variety of biomass is being considered as adsorbents of heavy metals for treatment of industrial and domestic wastewaters as well as natural waters, including drinking water. In the present investigation, the potential of Quercus ilex phytomass from stem, leaf and root as an adsorbent of chromium (Cr), nickel (Ni), copper (Cu), cadmium (Cd) and lead (Pb) at ambient temperature was investigated. The metal uptake capacity of the root for different metals was found to be in the order: Ni>Cd>Pb>Cu>Cr; stem Ni>Pb>Cu>Cd>Cr; and leaf Ni>Cd>Cu>Pb>Cr. The highest amount adsorbed was Ni (root>leaf>stem). Data from this laboratory demonstrated that Ni is sequestered mostly in the roots, where concentrations can be as high as 428.4 ng/g dry wt., when 1-year-old seedlings were treated with Ni (2000 mg/l) in pot culture experiments, compared to 7.63 ng/g dry wt., control (garden and greenhouse soil) topsoil where Ni was present in trace amounts. This proves that the root biomass of Q. ilex has the capacity for complexing Ni. Cr exhibited the least adsorption values for all the three types of phytomass compared to other metals. The trend of adsorption of the phytomass was similar for Ni and Cd, i.e. root>leaf>stem. Desorption with 10 mM Na(4) EDTA was effective (55-90%) and, hence, there exists the possibility of recycling the phytomass. The biosorption results of recycled phytomass suggest that the selected adsorbents are re-usable. The advantages and potential of the Q. ilex phytomass as a biofilter of toxic trace metals, the scope and need for enhancing the efficiency of the Q. ilex phytomass as an adsorbent of metals are presented.  相似文献   

20.
Jiang CY  Sheng XF  Qian M  Wang QY 《Chemosphere》2008,72(2):157-164
A heavy metal-resistant bacterial strain was isolated from heavy metal-contaminated soils and identified as Burkholderia sp. J62 based on the 16S rDNA gene sequence analysis. The heavy metal- and antibiotic resistance, heavy metal solubilization of the isolate were investigated. The isolate was also evaluated for promoting plant growth and Pb and Cd uptakes of the plants from heavy metal-contaminated soils in pot experiments. The isolate was found to exhibit different multiple heavy metal and antibiotic resistance characteristics. Atomic absorption spectrometer analysis showed increased bacterial solubilization of lead and cadmium in solution culture and in soils. The isolate produced indole acetic acid, siderophore and 1-aminocyclopropane-1-carboxylate deaminase. The isolate also solubilized inorganic phosphate. Inoculation with the isolate was found to significantly (p < 0.05) increase the biomass of maize and tomato plants. Increase in tissue Pb and Cd contents varied from 38% to 192% and from 5% to 191% in inoculated plants growing in heavy metal-contaminated soils compared to the uninoculated control, respectively. These results show that heavy metal-solubilizing and plant growth promoting bacteria are important for plant growth and heavy metal uptake which may provide a new microbial enhanced-phytoremediation of metal-polluted soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号