首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While phytoextraction tools are increasingly applied to remediation of contaminated soils, strategies are needed to optimize plant uptake by improving soil conditions. Mineral nutrition affects plant growth and metal absorption and subsequently the accumulation of heavy metal through hyper-accumulator plants. Microcosm experiments were conducted in greenhouse to examine the effect of different phosphorus (P) sources on zinc (Zn) phytoextraction by Sedum alfredii in aged Zn-contaminated paddy soil. The Zn accumulation, soil pH, microbial biomass and enzyme activity, available Zn changes. and Zn phytoremediation efficiency in soil after plant harvest were determined. Upon addition of P, Zn uptake of S. alfredii significantly increased. Mehlich-3 extractable or the fractions of exchangeable and carbonate-bound soil Zn were significantly increased at higher P applications. Soil pH significantly decreased with increasing P application rates. Soil microbial biomass in the P-treated soils was significantly higher (P?<?0.05) than those in the control. Shoot Zn concentration was positively correlated with Mehlich-3 extractable P (P?<?0.0001) or exchangeable/carbonate-bound Zn (P?<?0.001), but negatively related to soil pH (P?<?0.0001). These results indicate that application of P fertilizers has the potential to enhance Zn mobility and uptake by hyperaccumulating plant S. alfredii, thus increasing phytoremediation efficiency of Zn-contaminated soils.  相似文献   

2.
To investigate the variation of Zn and Cd accumulation and tolerance of Sedum alfredii (a newly reported Zn/Cd hyperaccumulator), field surveys and hydroponic experiments were conducted among three populations of this species: two originating from old Pb/Zn mines in Zhejiang (ZJ) and Hunan (HN) Provinces and one from a "clean" site in Guangdong (GD) Province, China. Under field conditions, up to 12,524 and 12,253 mg kg(-1) Zn, and 1400 and 97 mg kg(-1) Cd in shoots of ZJ and HN plants were recorded respectively. Under hydroponic conditions, ZJ and HN plants accumulated significantly higher Zn and Cd in their leaves and stems, and possessed significantly higher Zn and Cd tolerance than GD plants. Among the two contaminated populations, ZJ plants showed higher Cd tolerance and accumulation (in leaves) than HN plants. The present results indicate that significant differences in Zn and Cd accumulation and tolerance exist in populations of S. alfredii.  相似文献   

3.
The perennial herb Phytolacca acinosa Roxb. (Phytolaccaceae), which occurs in Southern China, has been found to be a new manganese hyperaccumulator by means of field surveys on Mn-rich soils and by glasshouse experiments. This species not only has remarkable tolerance to Mn but also has extraordinary uptake and accumulation capacity for this element. The maximum Mn concentration in the leaf dry matter was 19,300 microg/g on Xiangtan Mn tailings wastelands, with a mean of 14,480 microg/g. Under nutrient solution culture conditions, P. acinosa could grow normally with Mn supplied at a concentration of 8000 micromol/l, although with less biomass than in control samples supplied with Mn at 5 micromol/l. Manganese concentration in the shoots increased with increasing external Mn levels, but the total mass of Mn accumulated in the shoots first increased and then decreased. At an Mn concentration of 5000 micromol/l in the culture solution, the Mn accumulation in the shoot dry matter was highest (258 mg/plant). However, the Mn concentration in the leaves reached its highest value (36,380 microg/g) at an Mn supply level of 12,000 micromol/l. These results confirm that P. acinosa is an Mn hyperaccumulator which grows rapidly, has substantial biomass, wide distribution and a broad ecological amplitude. This species provides a new plant resource for exploring the mechanism of Mn hyperaccumulation, and has potential for use in the phytoremediation of Mn-contaminated soils.  相似文献   

4.
Abstract

Cadmium (Cd) has no known essential biological function, but it is toxic to plants, animals, and humans. A promising approach to prevent Cd from entering the food chain would be to select and/or create Cd‐accumulating plants to remediate contaminated soils or to develop Cd‐excluding plants to reduce Cd flow from soils into foods. The present study was undertaken to examine the differences in Cd influx, transport, and accumulation among five plant species in relation to plant tolerance to Cd toxicity. Ryegrass (Lolium perenne L.) had the least reduction in dry matter which may be due to its lowest Cd transport rate (TR) to shoots at all Cd levels among the plant species tested. White‐clover (Trifolium repens L.) was the most sensitive species to Cd toxicity, likely because of its highest Cd influx rate (IR) and high TR when plants were grown at low Cd2+ activity (≤8 μM). The high tolerance of cabbage (Brassica oleracea var. capitata L.) to moderate Cd toxicity (≤14 μM) appeared to be mainly due to the detoxification of Cd inside plant tissue since it recorded the highest TR and relatively high IR for Cd among the tested species. At Cd2+ activities up to 28 uM, the Cd uptake ratios of shoot/root for ryegrass were, on average, about 50‐fold and 27‐fold lower than that for cabbage and maize (Zea mays L.), respectively. These results showed that Cd could be easily transported into shoots of cabbage and maize, but was mainly confined to roots of ryegrass. We suggest that influx and transport rates, especially transport rate, could be used as plant physiological parameters for screening Cd‐excluding genotypes among monocotyledonous plants.  相似文献   

5.
Environmental Science and Pollution Research - This study aimed to investigate the effects of selenium application on cadmium absorption, transport, and soil cadmium forms of winter wheat at...  相似文献   

6.
Chromium accumulation by the hyperaccumulator plant Leersia hexandra Swartz   总被引:2,自引:0,他引:2  
Zhang XH  Liu J  Huang HT  Chen J  Zhu YN  Wang DQ 《Chemosphere》2007,67(6):1138-1143
Leersia hexandra Swartz (Gramineae), which occurs in Southern China, has been found to be a new chromium hyperaccumulator by means of field survey and pot-culture experiment. The field survey showed that this species had an extraordinary accumulation capacity for chromium. The maximum Cr concentration in the dry leaf matter was 2978 mg kg(-1) on the side of a pond near an electroplating factory. The average concentration of chromium in the leaves was 18.86 times as that in the pond sediment, and 297.41 times as that in the pond water. Under conditions of the nutrient solution culture, it was found that L. hexandra had a high tolerance and accumulation capacity to Cr(III) and Cr(VI). Under 60 mg l(-1) Cr(III) and 10 mg l(-1) Cr(VI) treatment, there was no significant decrease of biomass in the leaves of L. hexandra (p>0.05). The highest bioaccumulation coefficients of the leaves for Cr(III) and Cr(VI) were 486.8 and 72.1, respectively. However, L. hexandra had a higher accumulation capacity for Cr(III) than for Cr(VI). At the Cr(III) concentration of 10 mg l(-1) in the culture solution, the concentration of chromium in leaves was 4868 mg kg(-1), while at the same Cr(VI) concentration, the concentration of chromium in leaves was only 597 mg kg(-1). These results confirmed that L. hexandra is a chromium hyperaccumulator which grows rapidly with a great tolerance to Cr and broad ecological amplitude. This species could provide a new plant resource that explores the mechanism of Cr hyperaccumulation, and has potential for usage in the phytoremediation of Cr-contaminated soil and water.  相似文献   

7.
The effects of elevated CO2 on metal species and mobility in the rhizosphere of hyperaccumulator are not well understood. We report an experiment designed to compare the effects of elevated CO2 on Cd/Zn speciation and mobility in the rhizosphere of hyperaccumulating ecotype (HE) and a non-hyperaccumulating ecotype (NHE) of Sedum alfredii grown under ambient (350 μl l?1) or elevated (800 μl l?1) CO2 conditions. No difference in solution pH of NHE was observed between ambient and elevated CO2 treatments. For HE, however, elevated CO2 reduced soil solution pH by 0.22 unit, as compared to ambient CO2 conditions. Elevated CO2 increased dissolved organic carbon (DOC) and organic acid levels in soil solution of both ecotypes, but the increase in HE solution was much greater than in NHE solution. After the growth of HE, the concentrations of Cd and Zn in soil solution decreased significantly regardless of CO2 level. The visual MINTEQ speciation model predicted that Cd/Zn–DOM complexes were the dominant species in soil solutions, followed by free Cd2+ and Zn2+ species for both ecotypes. However, Cd/Zn–DOM complexes fraction in soil solution of HE was increased by the elevated CO2 treatment (by 8.01 % for Cd and 8.47 % for Zn, respectively). Resin equilibration experiment results indicated that DOM derived from the rhizosphere of HE under elevated CO2 (HE-DOM-E) (90 % for Cd and 73 % for Zn, respectively) showed greater ability to form complexes with Cd and Zn than those under ambient CO2 (HE-DOM-A) (82 % for Cd and 61 % for Zn, respectively) in the undiluted sample. HE-DOM-E showed greater ability to extract Cd and Zn from soil than HE-DOM-A. It was concluded that elevated CO2 could increase the mobility of Cd and Zn due to the enhanced formation of DOM–metal complexes in the rhizosphere of HE S. alfredii.  相似文献   

8.
The capacity of the Australian native fern Pteris umbrosa to function as an arsenic (As) hyperaccumulator (shoot:soil As concentration >1) was examined by growing plants under glasshouse conditions in an inert medium supplemented with As. Arsenic preferentially accumulated in the fronds, a trait of a hyperaccumulator. The As concentration of fronds decreased with age, being particularly high in the croziers and low in the senesced fronds. Below ground, rhizomes accumulated more As than adventitious roots. Uptake from a range of solution concentrations followed Michaelis Menten kinetics up to a soil solution As concentration of 400mgl(-1). The K(m) for As uptake by roots suggested the operation of a low-affinity carrier. The predicted Nernst membrane potential indicated that uptake was against the electrochemical gradient of As. At 600mgl(-1), the rate of As uptake increased and phytotoxic effects were indicated by a significant decline in biomass. Arsenic uptake and translocation in P. umbrosa and Pteris vittata were similar at low exposure to As. At higher exposure, As uptake and translocation by P. vittata increased more than in P. umbrosa. The growth rate of both ferns was similar, whereas the biomass distribution was not, with P. vittata having a much larger root mass. This suggests that As uptake by P. umbrosa roots was very efficient and may be improved by stimulating root growth to enhance its potential.  相似文献   

9.
Qiu RL  Zhao X  Tang YT  Yu FM  Hu PJ 《Chemosphere》2008,74(1):6-12
A hydroponic experiment was carried out to study the effect of cadmium (Cd) on growth, Cd accumulation, lipid peroxidation, reactive oxygen species (ROS) content and antioxidative enzymes in leaves and roots of Arabis paniculata F., a new Cd hyperaccumuator found in China. The results showed that 22-89 microM Cd in solution enhanced the growth of A. paniculata after three weeks, with 21-27% biomass increase compared to the control. Cd concentrations in shoots and roots increased with increasing Cd supply levels, and reached a maximum of 1662 and 8670 mg kg(-1) Cd dry weight at 178 microM Cd treatment, respectively. In roots, 22-89 microM Cd reduced the content of malondialdehyde (MDA), superoxide (O(2)(-1)) and H(2)O(2) as well as the activities of superoxide dismutase (SOD), guaiacol peroxidase (GPX), ascorbate peroxidase (APX) and glutathione reductase (GR). In leaves, the contents of MDA, O(2)(-1) and H(2)O(2) remained unaffected by 22-89 microM Cd, while 178 microM Cd treatment significantly increased the MDA content, 69.5% higher than that of the control; generally, the activities of SOD, catalase (CAT), GPX and APX showed an increasing pattern with increasing Cd supply levels. Our present work concluded that A. paniculata has a great capability of Cd tolerance and accumulation. Moderate Cd treatment (22-89 microM Cd) alleviated the oxidative stress in roots, while higher level of Cd addition (178 microM) could cause an increasing generation of ROS, which was effectively scavenged by the antioxidative system.  相似文献   

10.
Li T  Xu Z  Han X  Yang X  Sparks DL 《Chemosphere》2012,88(5):570-576
Pot experiments were performed to investigate the characteristics of dissolved organic matter (DOM) in the rhizosphere soil of hyperaccumulating ecotype (HE) and a non-hyperaccumulating ecotype (NHE) of Sedum alfredii and its effects on the mobility of zinc (Zn). DOM was fractionated using XAD resins into six fractions. The acid fraction was the predominant component of DOM in the rhizosphere of S. alfredii, with hydrophilic acid (HiA), hydrophilic base (HiB), and hydrophilic neutral (HiN) in HE-DOM being 1.6, 1.9, and 1.2 times higher respectively, as compared to NHE-DOM. ATR-FTIR results showed that DOM in the rhizosphere of S. alfredii consisted of a mixture of hydroxylated and carboxylic acids, and HE-DOM exhibited more CO, OH, CC and CO functional groups than NHE-DOM. Resin equilibration experiment results indicated that DOM from the rhizosphere of both ecotypes of S. alfredii had the ability to form complexes with Zn, whereas the degree of complexation was significantly higher for HE-DOM (60%) than NHE-DOM (42%). The addition of HE-DOM significantly (P < 0.05) increased the solubility of four Zn minerals while NHE-DOM was not as effective at the same concentration. It was concluded that DOM derived from the rhizosphere of hyperaccumulating ecotype of S. alfredii could significantly increase Zn mobility through the formation of soluble DOM-metal complexes, this might be one of the important mechanism by which S. alfredii is involved in activating metal in rhizosphere.  相似文献   

11.
Environmental Science and Pollution Research - In order to explore the influence of C14 alkane on physiological stress responses, mineral nutrient elements uptake, cadmium (Cd) transfer, and uptake...  相似文献   

12.
The influence of soil characteristics on the phytoremediation potential of Thlaspi caerulescens is not well understood. We investigated the effect of soil pH and Cd concentration on plant Cd uptake on one soil type, and the variation in Cd uptake using a range of field contaminated soils. On soils with total Cd concentrations of 0.6-3.7 mg kg(-1), T. caerulescens (the Ganges ecotype) produced greater biomass in the pH range 5.1-7.6 than at pH 4.4. The highest plant Cd concentration (236 mg kg(-1)) and Cd uptake (228 microg pot(-1)) were observed at pH 5.1. On soils with total Cd concentrations of 2.6-314.8 mg kg(-1), shoot Cd concentrations were 10.9-1,196 mg kg(-1). Multiple regression analysis indicated that higher Cd in soil, low pH (within the range of >5) and coarser texture were associated with higher Cd concentration and Cd uptake by T. caerulescens.  相似文献   

13.
Continuous application of organic and inorganic fertilizers can affect soil and food quality with respect to heavy metal concentrations. The risk of cadmium (Cd) contamination in a long-term (over 20 years) experimental field in North China with an annual crop rotation of winter wheat and summer maize was investigated. The long-term experiment had a complete randomized block design with seven fertilizer treatments and four replications. The seven fertilizer treatments were (1) organic compost (OM), (2) half organic compost plus half chemical fertilizer (OM?+?NPK), (3) NPK fertilizer (NPK), (4–6) chemical fertilizers without one of the major nutrients (NP, PK, and NK), and (7) an unamended control (CK). Soil samples from 0 to 20 cm were collected in 1989, 1999, and 2009 to characterize Cd and other soil properties. During the past 20 years, various extents of Cd accumulation were observed in the soil, and the accumulation was mainly affected by atmospheric dry and wet deposition and fertilization. In 2009, the average Cd concentration in the soil was 148?±?15 μg kg?1 and decreased in the order of NPK?≈?OM?+?NKP?≈?PK?>?NP?≈?NK?>?OM?≈?CK. Sequential extraction of Cd showed that the acid-soluble fraction (F1, 32?±?7 %) and the residual fraction (F4, 31?±?5 %) were the dominant fractions of Cd in the soil, followed by the reducible fraction (F2, 22?±?5 %) and oxidizable fraction (F3, 15?±?6 %). The acid-soluble Cd fraction in the soil and Cd accumulation in the crops increased with soil plant available K. Fraction F3 was increased by soil organic C (SOC) and crop yields, but SOC reduced the uptake of soil Cd by crops. The long-term P fertilization resulted in more Cd buildup in the soil than other treatments, but the uptake of Cd by crops was inhibited by the precipitation of Cd with phosphate in the soil. Although soil Cd was slightly increased over the 20 years of intensive crop production, both soil and grain/kernel Cd concentrations were still below the national standards for environmental and food safety.  相似文献   

14.
The effects of Cd, Ni, Pb, and Zn on arsenic accumulation by the arsenic hyperaccumulator Pteris vittata were investigated in a greenhouse study. P. vittata was grown for 8 weeks in an arsenic-contaminated soil (131 mg As kg(-1)), which was spiked with 50 or 200 mg kg(-1) Cd, Ni, Pb, or Zn (as nitrates). P. vittata was effective in taking up arsenic (up to 4100 mg kg(-1)) and transporting it to the fronds, but little of the metals. Arsenic bioconcentration factors ranged from 14 to 36 and transfer factors ranged from 16 to 56 in the presence of the metals, both of which were reduced with increasing metal concentration. Fern biomass increased as much as 12 times compared to the original dry weight after 8 weeks of growth (up to 19 g per plant). Greater concentrations of Cd, Ni, and Pb resulted in greater catalase activity in the plant. Most of the arsenic in the plant was present as arsenite, the reduced form, indicating little impact of the metals on plant arsenic reduction. This research demonstrates the capability of P. vittata in hyperaccumulating arsenic from soils in the presence of heavy metals.  相似文献   

15.
Copper tolerance,uptake and accumulation by Phragmites australis   总被引:1,自引:0,他引:1  
Ye ZH  Baker AJ  Wong MH  Willis AJ 《Chemosphere》2003,50(6):795-800
Copper (Cu) uptake and accumulation of five populations of Phragmites australis growing in two mine sites (Parys Mountain, Wales, UK and Plombières, Belgium) contaminated with Cu and three 'clean' sites (Felixstowe, UK; Wisbech, UK and Mai Po, Hong Kong) were studied under field and glasshouse conditions. Cu tolerances in these populations of seedlings raised from seeds collected from the above five sites were also studied under glasshouse conditions. Although concentrations of Cu in the plant tissues (leaves, stems, rhizomes and roots) of P. australis and the associated soils from the Cu-contaminated sites were significantly higher than those of the plant tissues and the soils collected in the clean sites, small differences were found between the two Cu-contaminated populations and the three clean populations when seedlings were grown in 0.1 and 0.5 microg ml(-1) Cu treatment solutions. In general, different populations of seedlings showed similar growth responses, metal uptake and indices of Cu tolerance when cultured in the same Cu treatment solution for 3 weeks. There was insufficient evidence to support the hypothesis that the Cu-contaminated populations have evolved to Cu-tolerant ecotypes.  相似文献   

16.
Arabidopsis MRPs/ABCCs have been shown to remove various organic and inorganic substrates from the cytosol to other subcellular compartments. Here we first demonstrate that heterologous expression of AtMRP7 in tobacco (Nicotiana tabacum var. Xanthi) modifies cadmium accumulation, distribution and tolerance. Arabidopsis MRP7 was localized both in the tonoplast and in the plasma membrane when expressed in tobacco. Its overexpression increased tobacco Cd-tolerance and resulted in enhanced cadmium concentration in leaf vacuoles, indicating more efficient detoxification by means of vacuolar storage. Heterologous AtMRP7 expression also led to more efficient retention of Cd in roots, suggesting a contribution to the control of cadmium root-to-shoot translocation. The results underscore the use of AtMRP7 in plant genetic engineering to modify the heavy-metal accumulation pattern for a broad range of applications.  相似文献   

17.
Bufo arenarum females were treated daily with 0.5 mg Cd kg(-1) during 10 days to evaluate the uptake of this heavy metal and the induction of metallothionein synthesis in the liver. The liver incorporated 26% of the Cd administered, about 6.5 times higher than the average uptake of the other tissues of B. arenarum. Three protein fractions from the B. arenarum liver bound Cd, and were induced by this xenobiotic up to approx. 24 times above the basal level of these proteins.  相似文献   

18.
Gao Y  Zhu L 《Chemosphere》2004,55(9):1169-1178
Uptake, accumulation and translocation of phenanthrene and pyrene by 12 plant species grown in various treated soils were comparatively investigated. Plant uptake and accumulation of phenanthrene and pyrene were correlated with their soil concentrations and plant compositions. Root or shoot accumulation of phenanthrene and pyrene in contaminated soils was elevated with the increase of their soil concentrations. Significantly positive correlations were shown between root concentrations or root concentration factors (RCFs) of phenanthrene and pyrene and root lipid contents. The RCFs of phenanthrene and pyrene for plants grown in contaminated soils with initial phenanthrene concentration of 133 mgkg(-1) and pyrene of 172 mgkg(-1) were 0.05-0.67 and 0.23-4.44, whereas the shoot concentration factors of these compounds were 0.006-0.12 and 0.004-0.12, respectively. For the same soil-plant treatment, shoot concentrations and concentration factors of phenanthrene and pyrene were generally much lower than root. Translocations of phenanthrene and pyrene from shoots to roots were undetectable. However, transport of these compounds from roots to shoots usually was the major pathway of shoot accumulation. Plant off-take of phenanthrene and pyrene only accounted for less than 0.01% of dissipation enhancement for phenanthrene and 0.24% for pyrene in planted versus unplanted control soils, whereas plant-promoted biodegradation was the predominant contribution of remediation enhancement of soil phenanthrene and pyrene in the presence of vegetation.  相似文献   

19.
Chinese brake fern (Pteris vittata L.), an arsenic (As) hyperaccumulator, has shown the potential to remediate As-contaminated soils. This study investigated the effects of soil amendments on the leachability of As from soils and As uptake by Chinese brake fern. The ferns were grown for 12 weeks in a chromated-copper-arsenate (CCA) contaminated soil or in As spiked contaminated (ASC) soil. Soils were treated with phosphate rock, municipal solid waste, or biosolid compost. Phosphate amendments significantly enhanced plant As uptake from the two tested soils with frond As concentrations increasing up to 265% relative to the control. After 12 weeks, plants grown in phosphate-amended soil removed >8% of soil As. Replacement of As by P from the soil binding sites was responsible for the enhanced mobility of As and subsequent increased plant uptake. Compost additions facilitated As uptake from the CCA soil, but decreased As uptake from the ASC soil. Elevated As uptake in the compost-treated CCA soil was related to the increase of soil water-soluble As and As(V) transformation into As(III). Reduced As uptake in the ASC soil may be attributed to As adsorption to the compost. Chinese brake fern took up As mainly from the iron-bound fraction in the CCA soil and from the water-soluble/exchangeable As in the ASC soil. Without ferns for As adsorption, compost and phosphate amendments increased As leaching from the CCA soil, but had decreased leaching with ferns when compared to the control. For the ASC soil, treatments reduced As leaching regardless of fern presence. This study suggest that growing Chinese brake fern in conjunction with phosphate amendments increases the effectiveness of remediating As-contaminated soils, by increasing As uptake and decreasing As leaching.  相似文献   

20.

Purpose

We used a sequential extraction to investigate the effects of compost amendment on Cd fractionation in soil during different incubation periods in order to assess Cd stabilization in soil over time.

Methods

Pot experiments using rice plants growing on Cd-spiked soils were carried out to evaluate the influence of compost amendment on plant growth and Cd accumulation by rice. Two agricultural soils (Pinchen and Lukang) of Taiwan were used for the experiments. The relationship between the redistribution of Cd fractions and the reduction of plant Cd concentration due to compost amendment was then investigated.

Results and discussion

Compost amendment in Pinchen soil (lower pH) could transform exchangeable Cd into the Fe- and Mn-oxide-bound forms. With increasing incubation time, exchangeable Cd tended to transform into carbonate- and Fe- and Mn-oxide-bound fractions. In Lukang soil (higher pH), carbonate- and Fe- and Mn-oxide-bonded Cd were the main fractions. Exchangeable Cd was low. Compost amendment transformed the carbonate-bound form into the Fe and Mn oxide form. Pot experiments of rice plants showed that compost amendment enhanced plant growth more in Pinchen soil than in Lukang soil. Compost amendment could significantly reduce Cd accumulation in rice roots in both Pinchen and Lukang soils and restrict internal transport of Cd from the roots to the shoots. Because exchangeable Cd can be transformed into the stronger bonded fractions quickly in Pinchen soil, a reduction of Cd accumulation in rice due to compost amendment of Pinchen soil was significant by 45?days of growth. However, carbonate-bonded fractions in Lukang soil may provide a source of available Cd to rice plants, and exchangeable and carbonate-bonded fractions are transformed into the other fractions slowly. Thus, reduction of Cd accumulation by rice due to compost amendment in Lukang soil was significant by 75?days of growth.

Conclusions

The results of the study suggest that the effectiveness of compost amendment used for stabilization of Cd and to decrease the phytoavailability of Cd for rice plants is different in acidic and alkaline soils. In acidic soil, Cd fractionation redistributes quickly after compost amendment and shows a significant reduction of Cd accumulation by the plant within a few weeks. In alkaline soil, due to the strongly bound fractions of Cd being in greater quantity than the weakly bound ones, a longer period (a few months) to redistribute Cd fractions is needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号