首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
Methyl ethyl ketone (MEK) oxidation via H2O2 with tungsten-based polyoxometalate catalysts has gained much attention with an ever-growing body of knowledge focusing on the development of environmentally benign processes in chemical industry. In this study, two calorimetry techniques, differential scanning calorimetry (DSC) and Phi-TEC II adiabatic calorimetry, were employed to analyze the thermal hazards associated with the 2-butanol oxidation reaction system. Hydrogen peroxide was the oxidant and a tungsten-based polyoxometalate as the catalyst. Gas chromatography-mass spectrometry was used for identification of the organic products. Important thermal kinetic data were obtained including “onset” temperature, heat of reaction, adiabatic temperature rise and self-heat rate. From DSC results, three exothermic peaks were detected with a total heat generation of approximately 1.26 kJ/g sufficiently to induce a thermal runaway. Possible reaction pathway for three stages were proposed based on both DSC and GC-MS results. One exotherm was detected by Phi-TEC II calorimeter and the pressure versus temperature profile together with the DSC and GC-MS data demonstrate the complexity of 2-butanol reaction system under both thermal screening and adiabatic conditions.  相似文献   

2.
Methyl ethyl ketone peroxide (MEKPO) is a widely used initiator for polymerization reaction and hardener in glass-reinforced plastic. However, MEKPO is an unstable reactive chemical and has caused several serious accidents all over the world. This work studied the thermal stability of MEKPO in the presence of ferric oxide as the contaminant through calorimetric and kinetic studies. The calorimetry was performed using Automatic Pressure Tracking Adiabatic Calorimeter (APTAC) to identify the effects of ferric oxide (different concentration) on important reactive hazards such as onset temperature and pressure hazard. Kinetic modeling was then performed to study the kinetics of the runaway reaction and estimate important kinetic parameters. The results indicate that in the low concentration range (<0.3%), ferric oxide has no significant effect on the thermal stability of MEKPO. However, in the high and intermediate concentration range of ferric oxide (i.e., 10%), the negative effect on the thermal stability of MEKPO was observed. This result is in agreement with the kinetic study result that the activation energy and frequency factor decrease dramatically in the high ferric oxide concentration range. The results provide necessary process safety information for the handling of MEKPO and also technical basis for the further study in this area.  相似文献   

3.
4.
Ammonium peroxydisulfate (APS), one of the most widely used inorganic peroxides in the process industries, is a thermally unstable peroxide and potent oxidizer due to the presence of peroxy bond in the molecule and is incompatible with most substances. To investigate the effect of typical additives on the thermal decomposition of APS, in this paper, diamine phosphate (DAP), monoamine phosphate (MAP), and aluminum hydroxide (AH) were selected as additives; pure APS and samples with 10 wt% and 20 wt% of additives were first tested by differential scanning calorimetry (DSC). The experiments and analysis showed that the samples with 10 wt% of additive had better thermal stability than those with 20 wt% of additive. After screening, the three groups of 10 wt% AH, 10 wt% MAP, and 20 wt% MAP additive conditions could be considered to have a better thermal stability effect on the thermal decomposition of APS. Four groups of samples were, in turn, tested by Phi-Tec II. The adiabatic results showed two discontinuous exothermic processes; 10 wt% AH promoted the weak exothermic effect in the first stage. In contrast, the three groups of additives in the main exothermic stage showed different degrees of inhibition, and the inhibiting effect was ranked as 10 wt% AH, 10 wt% MAP, and 20 wt% MAP in order. Finally, the self-accelerated decomposition temperature (SADT) was calculated under the 25 kg standard package. The adiabatic results, including SADT, were combined to render feasible recommendations for the use of additives, which provides references for the packaging and transportation of additives and their applications.  相似文献   

5.
The bulk polymerization of methyl methacrylate (MMA) is of great importance in chemical industry, but the polymerization process is highly hazardous, and few reports have focused on the effect of initiators on its thermal hazards. In this work, to thoroughly explore the thermal hazard characteristics, the runaway behavior of MMA bulk polymerization is investigated by a combination of thermodynamics experimental and kinetics theoretical methods. The results indicate that the presence of initiator exhibits an undesirable thermal hazard to the MMA bulk polymerization, and its exothermic behavior is also greatly influenced by the type and concentration of initiator. For azobisisoheptanenitrile (ABVN), azodiisobutyronitrile (AIBN) and dibenzoyl peroxide (BPO) initiators as examples, the AIBN-initiated reaction has the shortest adiabatic induction period (39.51 min), whereas the BPO-initiated polymerization exhibits the strongest maximum temperature-rising rate and maximum pressure-rising rate. Under adiabatic runaway, the temperature and pressure change significantly with increasing AIBN concentration, revealing a great potential risk of thermal runaway. Kinetic parameters are calculated to further understand the thermal runaway mechanisms, showing a strong agreement with the adiabatic experimental data. Finally, based on the cooling failure scenario, severity grading is determined by the evaluation criteria. The current work provides extensive data as a reference and guidance for the process design and optimization of MMA bulk polymerization from the perspective of safety.  相似文献   

6.
过氧化甲乙酮的热危险性研究   总被引:1,自引:0,他引:1  
为研究过氧化甲乙酮(MEKPO)在运输与储存中的热危险性,利用差示扫描量热仪(DSC)对质量分数为52%的MEKPO溶液(以2,2,4-三甲基-1,3-戊二醇二异丁酸酯为溶剂)进行测试,得到其起始分解温度T0约为40℃,比放热量ΔH约为1.24 kJ/g。运用加速量热仪(ARC)对3种MEKPO溶液(40%,45%和52%)及MEKPO纯品(化学纯)在绝热条件下进行了热分解测试,并在此基础上,借助Semenov热爆炸模型,计算得到上述样品在50 kg包件下的自加速分解温度(TSADT)分别为65.64,63.72,55.88和51.17℃。研究结果表明,加入稀释稳定剂是降低MEKPO热危险性的有效途径,且MEKPO混合物中其质量分数越大,其危险性越高。  相似文献   

7.
4种硝酸酯热安定性的绝热试验研究   总被引:2,自引:0,他引:2  
利用绝热加速量热仪(ARC)对硝酸正丙酯(NPN)、硝酸异丙酯(IPN)、太根(TEGDN)、敌根(DEGDN)4种硝酸酯的热稳定性进行了绝热试验研究,得到绝热放热曲线和热分解特征参数。分析了4种物质分解过程的特点,对测试结果进行了修正。计算得到动力学参数和自加速分解温度SADT,以此作为评估热安定性的判据。结果表明,4种硝酸酯在外界热作用下容易发生分解,反应速度较快,伴随明显的热效应和压力效应。4种硝酸酯的热安定性由好到差排序为:IPN、NPN、TEGDN、DEGDN。  相似文献   

8.
With the extensive applications of lithium-ion batteries, many batteries explosion accidents were reported. The thermal stability of lithium-ion battery electrolyte could substantially affect the safety of lithium-ion battery. The C80 micro calorimeter was used to study the thermal stability of several commonly used organic solvents and electrolytes. The samples were heated in argon atmosphere and air atmosphere, respectively. The chemical reaction kinetics was supposed to fit by an Arrhenius law, then the self-accelerating decomposition temperature was calculated. It is found that most of the samples are stable in argon atmosphere while decomposing in air atmosphere, and the single organic solvent is more stable than the electrolyte generally.  相似文献   

9.
1-((cyano-1-methylethyl) azo) formamide (CABN) is an azo compound that exhibits high thermal sensitivity and self-reactivity. Because of incorrect operation, incompatible substances and other dangerous conditions, thermal explosion accidents may occur during the manufacturing, storage, and transportation of CABN. The pyrolysis characteristics of CABN and its mixture for various heating rates were assessed using differential scanning calorimetry. The results showed that incompatible substances increased the risk of CABN. Moreover, the thermal runaway of CABN under an adiabatic condition was studied using an adiabatic rate calorimeter to obtain the parameters under adiabatic condition. Based on the experimental data, the kinetic parameters of CABN and its mixtures were obtained. In addition, a thermal decomposition kinetic model of CABN was created using Thermal Safety Series. All experiments have shown that the conditions and parameters of CABN must be strictly controlled.  相似文献   

10.
Ionic liquid, an organic molten salt, has efficient flame-retardant performance. Few researchers have attempted to study its flame-retardant mechanism. Moreover, thermal stability and pyrolysis products have a great impact on the flame retardancy. Therefore, this paper focused on the phosphate ionic liquid of 1-butyl-3-methylimidazolium dibutyl phosphate ([Bmim][DBP]) and analyzed its thermal decomposition products and characteristics. The major bond energies of [Bmim][DBP] were calculated using B3LYP/6–311++G(d,p)//M06–2X/6–311++G(d,p) level. The experimental results show that the pyrolysis products were as followed: alkane or alkene with a carbon chain length of 1–4; imidazole and its derivatives; esters. Furthermore, Gas chromatography-mass spectrometer and Fourier transform infrared spectrometer were utilized to measure the gaseous products and solid phase products of [Bmim][DBP], which were obtained during thermogravimetric analysis. The results of theoretical and experimental analysis were highly consistent. Finally, the possible flame-retardant mechanism of [Bmim][DBP] was proposed.  相似文献   

11.
李玉臻  汪磊 《火灾科学》2013,22(2):88-93
采用熔融共混法制备聚苯乙烯(PS)/二硫化铁(FeS2)纳米复合材料研究FeS2对PS热稳定性和燃烧性能的影响。扫描电镜(SEM)结果表明FeS2能够很好地分散在PS基体中。热重分析(TGA)的数据显示,FeS2可以显著地提高残余炭量。锥形量热仪(CONE)结果表明,FeS2可以改变PS的分解,从而在复合材料的表面上形成炭层,导致燃烧和烟气方面的参数有效降低,如热释放速率(HRR)、总热释放(THR)、烟释放率(SPR)、烟释放总量(TSR)、平均质量损失速率(AMLR)和平均烟消光面积(ASEA)等。此外,极限氧指数也得到了提高。拉曼(LRS)的结果证实了残余炭中有石墨碳的存在,热降解过程中石墨碳的形成有利于对热扩散的抑制,从而改善了PS的热稳定和燃烧性能。  相似文献   

12.
以聚叠氮缩水甘油醚(GAP)和4,4'-偶氮(4-氰基戊酸)(ACVA)为原料合成大分子引发剂(MI-GAP),用其引发氯乙酸乙烯酯自由基聚合,得到聚叠氮缩水甘油醚嵌段聚氯乙酸乙烯酯(GAP-bPVCA),最后将其叠氮化得到含能聚合物——聚叠氮缩水甘油醚嵌段聚叠氮乙酸乙烯酯(GAP-b-PVAA)。采用傅里叶变换红外光谱(FT-IR)、紫外-可见光谱(UV-Vis)、核磁共振氢谱(1H NMR)对GAPb-PVAA的结构进行了表征。利用差热分析(DTA)、热重分析(TG)和微分热重分析(DTG)对GAP-b-PVAA的热稳定性进行了研究。结果表明,GAP-b-PVAA在空气中200℃未见分解;GAP-b-PVAA具有两个热失重过程,其中最大质量损失发生在228~243℃范围内,失重率为68.74%。GAP-b-PVAA热分解动力学参数由不同升温速率下的DTA表征数据,通过Kissinger方法和Ozawa方法计算得到,两种方法得到的表观活化能Ea数值相近,表明GAP-b-PVAA热稳定性良好,有望用于熔铸炸药中作为一种含能黏结剂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号