首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mak MS  Lo IM 《Chemosphere》2011,84(2):234-240
This study investigated the removal kinetics and mechanisms of Cr(VI) and As(V) by Fe(0) in the presence of fulvic acid (FA) and humic acid (HA) by means of batch experiments. The focus was on the involvements of FA and HA in redox reactions, metal complexation, and iron corrosion product aggregation in the removal of Cr(VI) and As(V) removal by Fe(0). Synthetic groundwater was used as the background electrolyte to simulate typical groundwater. The results showed faster Cr(VI) removal in the presence of HA compared to FA. Fluorescence spectroscopy revealed that no redox reaction occurred in the FA and HA. The results of the speciation modeling indicate that the free Fe(II) concentration was higher in the presence of HA, resulting in a higher removal rate of Cr(VI). However, the removal of As(V) was inhibited in the HA solution. Speciation modeling showed that the concentration of dissolved metal-natural organic matter (metal-NOM) complexes significantly affected the aggregation of the iron corrosion products which in turn affected the removal of As(V). The aggregation was found to be induced by gel-bridging of metal-NOM with the iron corrosion products. The effects of metal-NOM on the aggregation of the iron corrosion products were further confirmed by TEM studies. Larger sizes of iron corrosion products were formed in the FA solution compared to HA solution. This study can shed light on understanding the relationships between the properties of NOM (especially the content of metal-binding sites) and the removal of Cr(VI) and As(V) by Fe(0).  相似文献   

2.
The combination of zero-valent iron (Fe0) and iron oxide-coated sand (IOCS) was used to remove Cr(VI) and As(V) from groundwater in this study. The efficiency and the removal mechanism of Cr(VI) and As(V) by using this combination, with the influence of humic acid (HA), were investigated using batch experiments. Results showed that, compared to using Fe0 or IOCS alone, the Fe0-IOCS can perform better on the removal of both Cr(VI) and As(V). Metal extraction studies showed that As(V) was mainly removed by IOCS and iron corrosion products while Cr(VI) was mainly removed by Fe0 and its corrosion products. Competition was found between Cr(VI) and As(V) for the adsorption sites on the iron corrosion products. HA had shown insignificant effects on Cr(VI) removal but some effects on As(V) removal kinetics. As(V) was adsorbed on IOCS at the earlier stage, but adsorbed/coprecipitated with the iron corrosion products at the later stage.  相似文献   

3.
Wilkin RT  McNeil MS 《Chemosphere》2003,53(7):715-725
This study examines the applicability and limitations of granular zero-valent iron for the treatment of water impacted by mine wastes. Rates of acid-neutralization and of metal (Cu, Cd, Ni, Zn, Hg, Al, and Mn) and metalloid (As) uptake were determined in batch systems using simulated mine drainage (initial pH 2.3-4.5; total dissolved solids 14000-16000 mgl(-1)). Metal removal from solution and acid-neutralization occurred simultaneously and were most rapid during the initial 24 h of reaction. Reaction half-lives ranged from 1.50+/-0.09 h for Al to 8.15+/-0.36 h for Zn. Geochemical model results indicate that metal removal is most effective in solutions that are highly undersaturated with respect to pure-metal hydroxides suggesting that adsorption is the initial and most rapid metal uptake mechanism. Continued adsorption onto or co-precipitation with iron corrosion products are secondary metal uptake processes. Sulfate green rust was identified as the primary iron corrosion product, which is shown to be the result of elevated [SO(4)(2-)]/[HCO(3)(-)] ratios in solution. Reversibility studies indicate that zero-valent iron will retain metals after shifts in redox states are imposed, but that remobilization of metals may occur after the acid-neutralization capacity of the material is exhausted.  相似文献   

4.
The present work investigates the impacts and mechanisms associated with natural organic matter (NOM) in the Fe0 treatment system of Cu2+ and Zn2+ under roof runoff conditions. The NOM in runoff waters was characterized using XAD-4/8 adsorption resins, copper complexation, acidic capacity and liquid chromatography with online carbon detection. Batch kinetic experiments and flow-through configurations were performed and the results of metal removal were elucidated taking into account the characteristics of NOM. Based on the findings, it is shown that NOM influences the removal of metals through several complex pathways. At an un-favored condition for adsorption of metals, i.e., on iron corrosion products, at pH相似文献   

5.
Column experiments and numerical simulation were conducted to test the hypothesis that iron material having a high corrosion rate is not beneficial for the long-term performance of iron permeable reactive barriers (PRBs) because of faster passivation of iron and greater porosity loss close to the influent face of the PRBs. Four iron materials (Connelly, Gotthart-Maier, Peerless, and ISPAT) were used for the column experiments, and the changes in reactivity toward cis-dichloroethene (cis-DCE) degradation in the presence of dissolved CaCO3 were evaluated. The experimental results showed that the difference in distribution of the accumulated precipitates, resulting from differences in iron corrosion rate, caused a difference in the migration rate of the cis-DCE profiles and a significant difference in the pattern of passivation, indicating a faster passivation in the region close to the influent end for the material having a higher corrosion rate. For the numerical simulation, the accumulation of secondary minerals and reactivity loss of iron were coupled using an empirically-derived relationship that was incorporated into a multi-component reactive transport model. The simulation results provided a reasonable representation of the evolution of iron reactivity toward cis-DCE treatment and the changes in geochemical conditions for each material, consistent with the observed data. The simulations for long-term performance were also conducted to further test the hypothesis and predict the differences in performance over a period of 40 years under typical groundwater conditions. The predictions showed that the cases of higher iron corrosion rates had earlier cis-DCE breakthrough and more reduction in porosity starting from near the influent face, due to more accumulation of carbonate minerals in that region. Therefore, both the experimental and simulation results appear to support the hypothesis and suggest that reactivity changes of iron materials resulting from evolution of geochemical conditions should be considered in the design of iron PRBs.  相似文献   

6.
Zerovalent iron powder (ZVI or Fe0) and nanoparticulate ZVI (nZVI or nFe0) are proposed as cost-effective materials for the removal of aqueous antibiotics. Results showed complete removal of Amoxicillin (AMX) and Ampicillin (AMP) upon contact with Fe0 and nFe0. Antibiotics removal was attributed to three different mechanisms: (i) a rapid rupture of the β-lactam ring (reduction), (ii) an adsorption of AMX and AMP onto iron corrosion products and (iii) sequestration of AMX and AMP in the matrix of precipitating iron hydroxides (co-precipitation with iron corrosion products). Kinetic studies demonstrated that AMP and AMX (20 mg L−1) undergo first-order decay with half-lives of about 60.3 ± 3.1 and 43.5 ± 2.1 min respectively after contact with ZVI under oxic conditions. In contrast, reactions under anoxic conditions demonstrated better degradation with t1/2 of about 11.5 ± 0.6 and 11.2 ± 0.6 min for AMP and AMX respectively. NaCl additions accelerated Fe0 consumption, shortening the service life of Fe0 treatment systems.  相似文献   

7.
为了更为有效地利用微生物燃料电池(MFC)所产电能并提高零价铁(ZVI)去除污染物工艺的效率,构建了微生物燃料电池-零价铁(MFC-ZVI)耦合工艺,并将其应用在三价砷水溶液的处理中。实验结果表明,在该耦合系统中,ZVI直接利用了MFC所产生的低压电能,铁腐蚀速率和除砷效率因此得到显著提高。实验所用MFC的最高稳定产电电压为0.52 V,电解过程中MFC的库伦效率为4.59%,以二价铁离子计算的电流效率为72.74%。反应结束后,溶液的pH值由反应前的8.0升高到8.5。两体系中铁氧化物产生量的差异以及铁氧化物形态分布的不同可能是导致其除砷效果不同的主要原因。  相似文献   

8.
Huang YH  Zhang TC 《Chemosphere》2006,64(6):937-943
Batch tests were conducted to investigate nitrite reduction in a zerovalent iron (Fe0) system under various conditions. Nitrite at 1.4 mM initial concentration was slowly reduced to nitrogen gas in the first stage (days 1-6), which was mediated by an amorphous, Fe(II)-rich iron oxide coating. The second stage (days 7-14) featured a rapid reduction of nitrite to both ammonia and nitrogen gas and the formation of a more crystalline, magnetite form iron oxide coating. Water reduction by Fe0 occurred concurrently with nitrite reduction from the beginning and contributed significantly to the overall iron corrosion. Nitrite at 14 mM was found to passivate the surface of Fe0 grains with respect to nitrite reduction. Adding aqueous Fe2+ significantly accelerated reduction of nitrite by Fe0 to nitrogen gas with lepidocrocite as the main iron corrosion product. Substantially, though still substoichiometrically, 0.55 mol of Fe2+ were concomitantly consumed per 1.0 mol nitrite reduction, indicating that Fe0 was the main electron source. In the presence of Fe2+, nitrite reduction out-competed water reduction in terms of contributing to the overall iron corrosion. Results of this study help understand complicated interactions between water reduction and nitrite reduction, the roles of surface-bound Fe2+, and the evolution of the iron corrosion coating.  相似文献   

9.
考察了pH值对“Fe^0一厌氧微生物”体系降解2,4,6,一三氯酚(2,4,6.TCP)效果的影响,结果表明:pH值是影响“Fe^0-厌氧微生物”体系降解2,4,6-TCP效果的重要参数,初始pH值直接影响微生物活性和铁腐蚀,进而影响过程pH值变化,反过来又影响铁腐蚀和微生物活性,pH7.0~9.0的中性偏碱范围较适于厌氧微生物生长。Fe^0与微生物对目标污染物的降解具有协同促进作用,其协同促进机制表现在3方面:Fe^0与微生物对体系过程pH值具有互补调节作用,可将体系的pH值调节值适于微生物生长的中性范围;Fe^0腐蚀产生的Fe2+和H2可为微生物代谢提供电子对和营养物质,从而促进生物还原脱氯的进行;Fe^0的腐蚀过程直接对氯代有机物还原脱氯,而微生物又可促进Fe^0腐蚀。  相似文献   

10.
Permeable walls of granular iron are a new technology developed for the treatment of groundwater contaminated with dissolved chlorinated solvents. Degradation ofthe chlorinated solvents involves a charge transfer process in which they are reductively dechlorinated, and the iron is oxidized. The iron used in the walls is an impure commercial material that is covered with a passive layer of Fe2O3, formed as a result of a high-temperature oxidation process used in the production of iron. Understanding the behaviour of this layer upon contact with solution is important, because Fe2O3 inhibits mechanisms involved in contaminant reduction, including electron transfer and catalytic hydrogenation. Using a glass column specially designed to allow for in situ Raman spectroscopic and open circuit potential measurements, the passive layer of Fe2O3 was observed to be largely removed from the commercial product, Connelly iron, upon contact with Millipore water and with a solution of Millipore water containing 1.5 mg/l trichloroethylene (TCE). It has been previously shown that Fe2O3 is removed from iron surfaces upon contact with solution by an autoreduction reaction; however, prior to this work, the reaction has not been shown to occur on the impure commercial iron products used in permeable granular iron walls. The rate of removal was sufficiently rapid such that the initial presence of Fe2O3 at the iron surface would have no consequence with respect to the performance of an in situ wall. Subsequent to the removal of Fe2O3 layer, magnetite and green rust formed at the iron surface as a result of corrosion in both the Millipore water and the solution containing TCE. The formation of these two species, rather than higher valency iron oxides and oxyhydroxides, is significant for the technology. The former can interfere with contaminant degradation because they inhibit electron transfer and catalytic hydrogenation. Magnetite and green rust, in contrast, will not inhibit the mechanisms involved in contaminant reduction, and hence their formation is beneficial to the long-term performance of the iron material.  相似文献   

11.
Antoine Ghauch   《Chemosphere》2008,72(2):328-331
The following comments are proposed to clarify some related issues on the use of zero valent iron micrometric particles for the treatment of a thiobencarb pesticide solution published in a recent article by Nurul Amin et al., [Nurul Amin Md., Kaneco, S., Kato, T., Katsumata, H., Susuki, T., Otha, K., 2008. Removal of thiobencarb in aqueous solution by zero valent iron. Chemosphere 70 (3), 511–515], and discussed later by Chicgoua Noubactep.  相似文献   

12.
考察了pH值对"Fe0-厌氧微生物"体系降解2,4,6,-三氯酚(2,4,6-TCP)效果的影响,结果表明:pH值是影响"Fe0-厌氧微生物"体系降解2,4,6-TCP效果的重要参数,初始pH值直接影响微生物活性和铁腐蚀,进而影响过程pH值变化,反过来又影响铁腐蚀和微生物活性,pH 7.0~9.0的中性偏碱范围较适于厌氧微生物生长。Fe0与微生物对目标污染物的降解具有协同促进作用,其协同促进机制表现在3方面:Fe0与微生物对体系过程pH值具有互补调节作用,可将体系的pH值调节值适于微生物生长的中性范围;Fe0腐蚀产生的Fe2+和H2可为微生物代谢提供电子对和营养物质,从而促进生物还原脱氯的进行;Fe0的腐蚀过程直接对氯代有机物还原脱氯,而微生物又可促进Fe0腐蚀。  相似文献   

13.
Goal, Scope and Background Reducing occupant exposure to indoor mold is the goal of this research, through the efficacy testing of antimicrobial cleaners. Often mold contaminated building materials are not properly removed, but instead surface cleaners are applied in an attempt to alleviate the problem. The efficacy of antimicrobial cleaners to remove, eliminate or control mold growth on surfaces can easily be tested on non-porous surfaces. However, the testing of antimicrobial cleaner efficacy on porous surfaces, such as those found in the indoor environment such as gypsum board can be more complicated and prone to incorrect conclusions regarding residual organisms. The mold Stachybotrys chartarum has been found to be associated with idiopathic pulmonary hemorrhage in infants and has been studied for toxin production and its occurrence in water damaged buildings. Growth of S. chartarum on building materials such as gypsum wallboard has been frequently documented. Methods Research to control S. chartarum growth using 13 separate antimicrobial cleaners on contaminated gypsum wallboard has been performed in laboratory testing. Popular brands of cleaning products were tested by following directions printed on the product packaging. Results A variety of gypsum wallboard surfaces were used to test these cleaning products at high relative humidity. The results indicate differences in antimicrobial efficacy for the six month period of testing. Discussion Results for the six types of GWB surfaces varied extensively. However, three cleaning products exhibited significantly better results than others. Lysol All-Purpose Cleaner-Orange Breeze (full strength) demonstrated results which ranked among the best in five of the six surfaces tested. Both Borax and Orange Glo Multipurpose Degreaser demonstrated results which ranked among the best in four of the six surfaces tested. Conclusions The best antimicrobial cleaner to choose is often dependent on the type of surface to be cleaned of S. chartarum contamination. For Plain GWB, no paint, the best cleaners were Borax, Lysol All-Purpose Cleaner-Orange Breeze (full strength), Orange Glo Multipurpose Degreaser, and Fantastik Orange Action. Recommendations and Perspectives These results are not meant to endorse the incomplete removal of mold contaminated building materials. However, it is recognized that complete removal may not always be possible and solutions to control mold regrowth may contribute to reduced occupant exposure. Current recommendations of removal and replacement of porous building materials should be followed. It is not the intension of this discussion to endorse any product. Reporting on the performance of these products under the stated conditions was and remains the only purpose. ESS-Submission Editor: Dr. Lee Young (youngrisk@bresnan.net)  相似文献   

14.
Nanoscale zero-valent iron (NZVI) particles are promising materials for the in-situ remediation of a wide variety of source zone contaminants. This study presents the results of a systematic investigation of the stability of bimetallic FePd nanoparticle suspensions in water and their capability to degrade trichloroethylene (TCE) synthesized in the presence of various stabilizers (i.e., carboxymethyl cellulose (CMC), polyvinylpyrrolidone (PVP), and guar gum). Results indicate a dramatic improvement in FePd suspension stability when the stabilizer is present in the matrix during the nanoparticle synthesis step. Stability enhancement is controlled by iron nanoparticle/stabilizer electrostatic and steric interactions, which are a function of the molecular structure of the stabilizer. Stabilization mechanisms differed for each stabilizer with CMC and guar gum exhibiting the best nanoparticle suspension stability improvement. Results suggest that the complexation of iron precursors with the stabilizer, during synthesis, plays a key role in nZVI stability improvement. In case of guar gum, gelation during synthesis significantly increased suspension viscosity, enhancing suspension stability. The capability of these materials to degrade TCE was also investigated. Results demonstrated that when stabilizers were present in the matrix dechlorination rates increased significantly. FePd nanoparticles in CMC had the highest observed rate constant; however the highest surface area-normalized rate constant was obtained from FePd stabilized in PVP360K. Results from this study can be used to aid in the selection of appropriate iron nanoparticle stabilizers. Stabilizer selection should be assessed on a case by case basis as no stabilizer will meet the needs of all in-situ remediation applications.  相似文献   

15.
An urban soil chronosequence in downtown Detroit, MI was studied to determine the effects of time on pedogenesis and heavy metal sequestration. The soils developed in fill derived from mixed sandy and clayey diamicton parent materials on a level late Pleistocene lakebed plain under grass vegetation in a humid-temperate (mesic) climate. The chronosequence is comprised of soils in vacant lots (12 and 44 years old) and parks (96 and 120 years old), all located within 100 m of a roadway. An A-horizon 16 cm thick with 2% organic matter has developed after only 12 years of pedogenesis. The 12 year-old soil shows accelerated weathering of iron (e.g. nails) and cement artifacts attributed to corrosion by excess soluble salts of uncertain origin. Carbonate and Fe-oxide are immobilizing agents for heavy metals, hence it is recommended that drywall, plaster, cement and iron artifacts be left in soils at brownfield sites for their ameliorating effects.  相似文献   

16.
The objective of this research is to evaluate an integrated system coupling zero-valent iron (Fe(0)) and aerobic biological oxidation for the treatment of azo dye wastewater. Zero-valent (elemental) iron can reduce the azo bond, cleaving dye molecules into products that are more amenable to aerobic biological treatment processes. Azo dye reduction products, including aniline and sulfanilic acid, were shown to be readily biodegradable at concentrations up to approximately 25 mg/L. Batch reduction and biodegradation data support the proposed integrated iron pretreatment and activated sludge process for the degradation of the azo dyes orange G and orange I. The integrated system was able to decolorize dye solutions and yield effluents with lower total organic carbon concentrations than control systems without iron pretreatment. The success of the bench-scale integrated system suggests that iron pretreatment may be a feasible approach to treat azo dye containing wastewaters.  相似文献   

17.
Degradation of atrazine by catalytic ozonation in the presence of iron scraps (ZVI/O3) was carried out. The key operational parameters (i.e., initial pH, ZVI dosage, and ozone dosage) were optimized by the batch experiments, respectively. This ZVI/O3 system exhibited much higher degradation efficiency of atrazine than the single ozonation, ZVI, and traditional ZVI/O2 systems. The result shows that the pseudo-first-order constant (0.0927?min?1) and TOC removal rate (86.6%) obtained by the ZVI/O3 process were much higher than those of the three control experiments. In addition, X-ray diffraction (XRD) analysis indicates that slight of γ-FeOOH and Fe2O3 were formed on the surface of iron scrap after ZVI/O3 treatment. These corrosion products exhibit high catalytic ability for ozone decomposition, which could generate more hydroxyl radical (HO?) to degrade atrazine. Six transformation intermediates were identified by liquid chromatography-mass spectrometry (LC-MS) analysis in ZVI/O3 system, and the degradation pathway of atrazine was proposed. Toxicity tests based on the inhibition of the luminescence emitted by Photobacterium phosphoreum and Vibrio fischeri indicate the detoxification of atrazine by ZVI/O3 system. Finally, reused experiments indicate the approving recyclability of iron scraps. Consequently, the ZVI/O3 system could be as an effective and promising technology for pesticide wastewater treatment.  相似文献   

18.
Dissolved silica species are naturally occurring, ubiquitous groundwater constituents with corrosion-inhibiting properties. Their influence on the performance and longevity of iron-based permeable reactive barriers for treatment of organohalides was investigated through long-term column studies using Connelly iron as the reactive medium. Addition of dissolved silica (0.5 mM) to the column feed solution led to a reduction in iron reactivity of 65% for trichloroethylene (TCE), 74% for 1,1,2-trichloroethane (1,1,2-TCA), and 93% for 1,1,1-trichloroethane (1,1,1-TCA), compared to columns operated under silica-free conditions. Even though silica adsorption was a gradual process, the inhibitory effect was evident within the first week, with subsequent decreases in reactivity over 288 days being relatively minor. Lower concentrations of dissolved silica species (0.2 mM) led to a lesser decrease (70%) in iron reactivity toward 1,1,1-TCA. The presence of dissolved silica species produced a shift in TCE product distribution toward the more highly chlorinated product cis-dichloroethylene (cis-DCE), although it did not appear to alter products originating from the trichloroethanes. The major corrosion products identified were magnetite (Fe3O4) or maghemite (gamma-Fe2O3) and carbonate green rust ([Fe4(2+)Fe(2)3+(OH)12][CO(3).2H2O]). Iron carbonate hydroxide (Fe(II)1.8Fe(III)0.2(OH)2.2CO3) was only found in the silica-free column, indicating that silica may hinder its formation. A comparison with columns operated under the same conditions, but using Master Builder iron as the reactive matrix, showed that Connelly iron is initially less reactive, but performs better than Master Builder iron over 288 days.  相似文献   

19.
以餐厨垃圾中有机组分作为碳源,通过添加铁盐水热炭化制备铁/炭纳米复合材料。考察了不同铁盐(Fe-SO4,FeCl3,Fe(NO3)3)对餐厨垃圾水热炭化物的形貌,以及氮、磷元素的迁移转化的影响;并研究了负载铁的物理、化学性质。实验结果表明,铁盐在水热炭化过程中促进了餐厨垃圾转化生成多种纳米结构。铁的价态是影响复合物形貌的主要影响因素:三价铁离子对大分子有机物的水解和炭化过程有催化作用,从而促进壳核式结构的纳米线及微米球复合物的生成;而亚铁离子则导致可溶性有机物炭化形成空心纳米球结构。负载铁的化学形态主要受阴离子的影响:硝酸铁体系中铁主要以氢氧化物形式沉积、其他阴离子体系则以磷酸盐为主要形态负载。  相似文献   

20.
Chen YM  Li CW  Chen SS 《Chemosphere》2005,59(6):753-759
A fluidized zero valent iron (ZVI) reactor is examined for nitrate reduction. Using the system, the pH of solution can be maintained at optimal conditions for rapid nitrate reduction. For hydraulic retention times of 15 min, the nitrate reduction efficiency increases with increasing ZVI dosage. At ZVI loadings of 33 gl-1, results indicate that the nitrate removal efficiency increases from less than 13% for systems without pH control to more than 92% for systems operated at pH of 4.0. By maintaining pH at 4.0, we are able to decrease the hydraulic retention time to 3 min and still achieve more than 87% nitrate reduction. The recovery of total nitrogen added as nitrate, ammonium, and nitrite was less than 50% for the system operated at pH4.0, and was close to 100% for a system without pH control. The possibility of nitrate and ammonium adsorption onto iron corrosion products was ruled out by studying the behavior of their adsorption onto freshly hydrous ferric oxide at variable pH. Results indicate the probable formation of nitrogen gas species during reaction in pH4.0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号