首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three genetically distinct clones of Skeletonema costatum (Grev.) Cleve were grown at 20°C under high (274 E m-2 s-1) and low (27 E m-2 s-1) light conditions and their photoadaptive photosynthetic responses compared. When all three clones were grown under low light, pigment analyses and fluorescence excitation spectra demonstrated that the accessory pigments, chlorophyll c and fucoxanthin, became more important in light-harvesting compared to chlorophyll a. Photosynthetic unit sizes increased for Photosystems I and II in low light, but photosynthesis vs irradiance characteristics were not reliable predictors of photosynthetic unit features. Fluorescence excitation spectra and photosynthesis vs irradiance (P-I) relationships indicated that changes in energy transfer occurred independent of changes in pigment content. Large increases in accessory pigment content were not accompanied by large increases in excitation from these pigments. Changes in energy transfer properties were as important as changes in PSU size in governing the photoadaptive responses of S. costatum. When the three clones were grown under identical conditions, each had a separate and distinct pattern of photoadaptation. Significant differences among clones were found for pigment ratios, photosynthetic unit sizes for Photosystems I and II and efficiency of energy transfer between pigments. These strikingly different photoadaptive strategies among clones may partially account for the great ecological success of the diatom species. This is the first quantitative investigation of the importance of both chlorophyll c and fucoxanthin to the adaptive responses of diatoms to light intensity, and represents the most complete characterization of the photoadaptive responses of a single species of marine phytoplankter to differences in light environment.  相似文献   

2.
Phytoplankton pigments and species were studied at a coastal station off Sydney (New South Wales, Australia) over one annual cycle. Sudden increases in chlorophyll a (up to 280 mg m-2), due to short-lived diatom blooms, were found in May, July, September, January and February. These were superimposed upon background levels of chlorophyll a (20 to 50 mg m-2), due mostly to nanoplankton flagellates, which occurred throughout the year. The nanoplankton (<15 m) accounted for 50 to 80% of the total phytoplankton chlorophyll, except when the diatom peaks occurred (10 to 20%). The annual cycle of populations of 16 dominant species-groups was followed. Possible explanations as to alternation of diatom-dominated and nanoplankton-dominated floras are discussed. Thin-layer chromatography of phytoplankton pigments was used to determine the distribution of algal types, grazing activity, and phytoplankton senescence in the water column. Chlorophyll c and fucoxanthin (diatoms and coccolithophorids) and chlorophyll b (green flagellates) were the major accessory pigments throughout the year, with peridinin (photosynthetic dinoflagellates) being less important. Grazing activity by salps and copepods was apparent from the abundance of the chlorophyll degradation products pheophytin a (20 to 45% of the total chlorophyll a) and pheophorbide a (10 to 30%). Chlorophyllide a (20 to 45%) was associated with blooms of Skeletonema costatum and Chaetoceros spp. Small amounts of other unidentified chlorophyll a derivatives (5 to 20%) were frequently observed.  相似文献   

3.
Photoadaptation of photosynthesis in Gonyaulax polyedra   总被引:1,自引:0,他引:1  
Gonyaulax polyedra Stein exhibited a combination of photoadaptive strategies of photosynthesis when only a single environmental variable, the light intensity during growth, was altered. Which of several biochemical/physiological adjustments to the light environment were employed depended on the level of growth irradiance. The photoadaptive strategies employed over any small range of light levels appeared to be those best suited for optimizing photosynthetic performance and not photosynthetic capacity. (Photosynthetic performance, P i, is defined as the rate of photosynthesis occurring at the level of growth irradiance.) Among all photosynthetic parameters examined, only photosynthetic performance showed a consistent correspondence to growth rates of G. polyedra. Above 3500 to 4000 W cm-2, where photosynthetic performance was equal to photosynthetic capacity, cells were not considered light-limited in either photosynthesis or growth. At these higher light levels, photosynthetic perfomance, cell volume, growth rates and respiration rates remained maximal; photosynthetic pigment content varied only slightly, while the photosynthetic capacity of the cells declined. At intermediate light levels (3000 to 1500 W cm-2), photosynthesis, not growth, was light-limited, and photoadaptive strategies were induced which enhance absorption capabilities and energy transfer efficiencies of chlorophyll a to the reaction centers of G. polyedra. Photosynthetic capacity remained constant at about 280 mol O2 cm-3 h-1, while photosynthetic performance ranged from 100 to 130 mol O2 cm-3 h-1. Major increases in photosynthetic pigments, especially peridinin-chlorophyll a-proteins and an unidentified chlorophyll c component, accompanied photoadaptation to low irradiances. Maximal growth rates of 0.3 divisions day-1 were maintained, as were respiration rates of about-80 mol O2 cm-3 h-1 and cell volumes of about 5.4×10-8 cm-3 cell-1. Below about 1250 W cm-2, photosynthesis in G. polyedra was so light-limited that photosynthetic performance was unable to support maximal growth rates. Under these conditions, G. polyedra displayed photostress responses rather than photoadaptive strategies. Photostress was manifested as reduced cell volumes, slower growth, and drastic reductions in pigmentation, photosynthetic capacity, and rates of dark respiration.  相似文献   

4.
The distribution of phycoerythrin-richSynechococcus spp. relative to eukaryotic algae and the contribution ofSynechococcus spp. toin situ primary production were compared at a neritic front, in warm-core eddy 84-E, and at Wilkinson's Basin, during a cruise to the Northwest Atlantic Ocean in July/August 1984. Immunofluorescence analyses ofSynechococcus strains demonstrated the restricted distribution of the tropical oceanic serogroup to the warm-core eddy, while strains of the neritic serogroup and those labelled by antiserum directed against a motile strain, were abundant in all three water masses. Although the majority ofSynechococcus spp. cells were observed in the 0.6 to 1 m fraction, an increasing proportion of the totalSynechococcus spp. cells were found in the 1 to 5 m fraction as nitrate concentrations increased near the base of the thermocline. From immunofluorescence analyses, we determined that the increasing proportion of largerSynechococcus spp. cells at depth was not the result of a change in strain composition, and may therefore be associated with increasing cell volume due to the enhanced nutrient supply. The contribution of the different size fractions to the total standing crop of chlorophyll and thein situ rate of photosynthesis was distincty different for the three water masses. At the neritic front, the larger photoautotrophs of the 1 to 5 m and >5 m fractions were the major contributors to chlorophyll concentrations and primary production.Synechococcus spp. appeared to provide only 6% of the dawn-to-duskin situ primary production at the neritic front. In modified Sargasso water in the warm-core eddy,Synechococcus spp. contributed 25% to thein situ rate of integrated primary production. In this warm-core eddy, the 0.2 to 0.6 m fraction made a major contribution to the standing crop of chlorophyll and primary production that equalled or exceeded that of the larger sze categories. Furthermore, at the bottom of the euphotic layer, eukaryotes numerically dominated the 0.2 to 0.6 m fraction, which contributed 61% of the primary productivity. At Wilkinson's Basin, theSynechococcus spp.-dominated 0.6 to 1.0 m fraction made the greatest contribution to the standing crop of chlorophyll an primary production, while smaller photoautotrophs (0.2 to 0.6 m) accounted for little of the chlorophyll or photosynthetic rates measured over the euphotic layer. Largest numbers ofSynechococcus spp. (2.9x108 cells l-1) occurred at the 18% isolume, coincident with a shoulder in the chlorophyll fluorescence profile and the site of maximumin situ primary productivity. At Wilkinson's Basin,Synechococcus spp. contributed 46% to thein situ photosynthesis integrated over the water-column.  相似文献   

5.
Photoadaption in marine phytoplankton: Response of the photosynthetic unit   总被引:3,自引:0,他引:3  
Some species of phytoplankton adapt to low light intensities by increasing the size of the photosynthetic unit (PSU), which is the ratio of light-harvesting pigments to P700 (reaction-center chlorophyll of Photosystem I). PSU size was determined for 7 species of marine phytoplankton grown at 2 light intensities: high (300 E m-2 s-1) and low (4 E m-2 s-1); PSU size was also determined for 3 species grown at only high light intensity. PSU size varied among species grown at high light from 380 for Dunaliella euchlora to 915 for Chaetoceros danicus. For most species grown at low light intensity, PSU size increased, while the percentage increase varied among species from 13 to 130%. No change in PSU size was observed for D. euchlora. Photosynthetic efficiency per chlorophyll a (determined from the initial slope of a curve relating photosynthetic rate to light intensity) varied inversely with PSU size. In contrast, photosynthetic efficiency per P700 was enhanced at larger PSU sizes. Therefore, phytoplankton species with intrinsically large PSU sizes probably respond more readily to the rapid fluctuations in light intensity that such organisms experience in the mixed layer.Contribution No. 1180 from the Department of Oceanography, University of Washington, Seattle, Washington, USA  相似文献   

6.
Nanoplankton and picoplankton primary production has been studied at two oceanic stations in the Porcupine Sea-bight and at one shelf station in the Celtic Sea. At both sites, low wind conditions in June and July 1985 resulted in greatly reduced vertical turbulent mixing and a secondary, temporary thermocline developed in what is usually a well-mixed surface layer; as a result, there was physical separation of the phytoplankton within two zones of the surface mixed layer. The photosynthetic characteristics of three size fractions (>5 m, <5 to >1 m and <1 to >0.2 m) of phytoplankton populations from the two zones have been measured. Phytoplankton was more abundant at the oceanic stations and chlorophyll a values were between 1.3 and 2.2 mg chlorophyll a m-3, compared with 0.3 to 0.6 mg chlorophyll a m-3 at the shelf station; at both stations, numbers of cyanobacteria were slightly higher in the lower zone of the surface mixed layer. There was no effect of the temporary thermocline on the vertical profiles of primary production and most phtosynthesis occurred in the surface 10 m. Photosynthetic parameters of the three size fractions of phytoplankton have been determined; there was considerable day-to-day variation in the measured photosynthetic parameters. Assimilation number (P m B ) of all >5 m phytoplankton was lower for the deeper than for the surface populations, but there was little change in initial slope (a B ). The small oceanic nanoplankton (<5 to >1 m) showed changes similar to the >5 m phytoplankton, but the same size fraction from the shelf station showed changes that were more like those shown by the picoplankton (<1 m) viz, little change in P m B but an increase in a B with depth. Values of a B were generally greater for the picoplankton fraction than for the larger phytoplankton, but values of adaptation parameter (I k )(=P m B /) were not always less. There was little evidence to support the hypothesis that these populations of picoplankton were significantly more adapted to low light conditions than the larger phytoplankton cells. When photosynthetic parameters of the picoplankton were normalised to cell number (P m C /a C ) rather than chlorophyll a, P m C was comparable to other published data for picoplankton, but a C was much lower. The maximum doubling time of the picoplankton at saturating irradiance is calculated to be ca. 8.5 h for the oceanic population and ca. 6.2 h for the shelf population.  相似文献   

7.
The uptake of inorganic carbon into the thallus of Macrocystis pyrifera (L.) C. Ag. requires first that the inorganic carbon pass through the water medium to the plant surface. This transfer of inorganic carbon to the thallus must take place through a boundary layer. Experiments in water tunnels indicate that the boundary layer adjacent to the M. pyrifera blade may be turbulent in water speeds as low as 1 cm sec-1. Photosynthetic output of the blade can be increased by a factor of 300% by increasing water speeds over the blade surface from 0 to 4 cm sec-1. This is consistent with a decrease in the thickness of the boundary layer. Above 4 cm sec-1, the assimilation of carbon was limiting. The assimilation of carbon is generally known to follow Michaelis-Menten-like kinetics. Combining the two uptake steps into an overall model of carbon uptake agrees well with photosynthetic data obtained from M. pyrifera under varying conditions of water speed and bicarbonate concentrations in the laboratory. The ecological and morphological consequences of these findings are discussed.  相似文献   

8.
Seasonal patterns of growth, reproduction, and productivity of Codium fragile spp. tomentosoides (van Goor) Silva were monitored at 3 locations in Rhode Island. Maximal growth occurred during the summer and was more significantly correlated with temperature than any other factor measured in this study. Multiple correlation models suggested an interaction between temperature, irradiance, and available nitrogen. Maximal reproduction occurred in late summer and early fall. The maximal productivity, based on harvested quadrats, was 2. 10 g dry weight m-2 day-1. A large amount (up to 87.3%) of the annual production entered the detrital food chain during the winter by fragmentation of the thallus. Culture studies examined the effects of temperature (6° to 30°C), irradiance (7 to 140 E m-2 sec-1), daylength (8 h light: 16 h dark to 24 h light: O h dark) and salinity (6 to 48) on growth. Differentiated thalli grew over a broad range of experimental conditions, with maximal growth at 24°C, 24 to 30 S, a minimal irradiance of 28 E m-2 sec-1, and 16 h daylength. The effect of increasing daylength was due to increased total daily irradiance rather than to a true photoperiodic effect. Undifferentiated sporelings survived and grew in a narrower range of environmental conditions than thalli. c. fragile spp. tomentosoides grew equally well with nitrate, nitrite, ammonium, and urea as a nitrogen source. The addition of NaHCO3 stimulated growth at levels of 2.4 to 4.8 mM, suggesting an inorganic carbon limitation in static cultures. This study supports the hypothesis that the in situ seasonal growth pattern of c. fragile spp. tomentosoides is primarily due to the interaction of temperature and irradiance.  相似文献   

9.
Suspended matter sampled in 1982 in the North Equatorial Current, in the open Atlantic to the west of West Africa, was analyzed by high performance liquid chromatography. The pigment fingerprint of samples taken in the surface mixed layer was dominated by zeaxanthin and chlorophyll a, in agreement with observed dominance of coccoid cyanobacteria. Near the bottom of the euphotic zone the fingerprint was more complicated, with a sharp transition at the depth of the deep chlorophyll maximum layer to dominance of chlorophyll b, 19-hexanoyloxyfucoxanthin and an unknown fucoxanthin derivative in the lower part of this layer; this fingerprint suggests dominance of eukaryotes (green algae, Prymnesiophyceae and Chrysophyceae) at depth. Up to 90% of the chl a was contained in particles smaller than 8 m, and in the surface mixed layer even more than 50% in particles smaller than 1 m. The high concentration of zeaxanthin relative to chl a near the surface suggests adaptation of the cyanobacteria to exposure to high irradiance. Evidence of this adaptation was the very high specific phytoplankton growth rate between sunrise and sunset (=0.16 h-1), measured by recording 14C incorporation into organic carbon and into chl a carbon after isolation of the latter by HPLC. The high concentration of chl b relative to chl a at depth was possibly caused by shade-adapted green algae containing more chl b than chl a. The specific growth rate of the deep shade community was low (<0.04 h-1), yet net primary production, calculated on the basis of chl a increase during incubation, was greatest at depth.  相似文献   

10.
Four endosymbiotic diatoms were isolated from 2 species of larger foraminifera collected in the Red Sea and Hawaii. The photoadaptive responses of the cultured diatoms were measured at 312, 19 and 7 W cm-2. Two of the diatoms (Fragilaria shiloi and Nitzschia laevis), both isolated from Amphistegina lessonii, grew fastest at 312 W cm-2. The other two diatoms (N. valdestriata and N. panduriformis) which were isolated from Heterostegina depressa, grew best at 19 W cm-2. Of the four diatoms, F. shiloi grew best at high light levels. Also in F. shiloi, chlorophyll c content per cell was directly proportional to light intensity; in contrast chlorophyll a and carotenoids increased to maxima at 19 W cm-2. The chlorophyll a and c and carotenoid content of N. valdestriata were also maximal at 19 W cm-2. Photosynthetic rates, measured by respirometry, suggested that the diatoms were photoinhibited at higher light intensities and did well at moderately low light intensities (175W cm-2). The photocompensation points of all 4 diatoms were about 2% of the light available in the spring at 1-m depth at Elat on the Red Sea. At Elat the photocompensation point would lie between 40 and 50 m if the algae were free in nature. The amount of attenuation of light by the shells of the host has not yet been measured. Presumably photocompensation of the algae within hosts is reached at depths less than 40 m.  相似文献   

11.
The photosynthetic characteristics of prokaryotic phycoerythrin-rich populations of cyanobacteriaSynechococcus spp. and larger eukaryotic algae were compared at a neritic frontal station (Pl), in a warm-core eddy (P2), and at Wilkinson's Basin (P3) during a cruise in the Northwest Atlantic Ocean in the summer of 1984.Synechococcus spp. numerically dominated the 0.6 to 1 m fraction, and to a lesser extent the 1 to 5 m size fractions, at most depths at all stations. At P2 and P3, all three size categories of phytoplankton (0.6 to 1 m, 1 to 5 m, and >5 m) exhibited similar depth-dependent chages in both the timing and amplitude of diurnal periodicities of chlorophyllbased and cell-based photosynthetic capacity. Midday maxima in photosynthesis were observed in the upper watercolumn which damped-out in all size fractions sampled just below the thermocline. For all size fractions sampled near the bottom of the euphotic zone, the highest photosynthetic capacity was observed at dawn. At all depths, theSynechococcus spp.-dominated size fractions had lower assimilation rates than larger phytoplankton size fractions. This observation takes exception with the view that there is an inverse size-dependency in algal photosynthesis. Results also indicated that the size-specific contribution to potential primary production in surface waters did not vary appreciably over the day. However, estimates of the percent contribution ofSynechococcus spp. to total primary productivity in surface waters at the neritic front were significantly higher when derived from short-term incubator measurements of photosynthetic capacity rather than from dawn-to-duskin situ measurements of carbon fixation. The discrepancy was not due to photoinhibitory effects on photosynthesis, but appeared to reflect increased selective grazing pressure onSynechococcus spp. in dawn-to-dusk samples. Low-light photoadaptation was evident in analyses of the depth-dependency ofP-I parameters (photosynthetic capacity,P max; light-limited slope, alpha;P max alpha,I k ; light-intensity beyond which photoinhibition occurs,I b ) of the > 0.6 m communities at all three stations and was attributable to stratification of the water column. There was a decrease in assimilation rates andI k with depth that was associated with increases in light-limited rates of photosynthesis. No midday photoinhibition ofP max orI b was observed in any surface station. Marked photoinhibition was detected only in the chlorophyll maximum at the neritic front and below the surface mixed-layer at Wilkinson's Basin, where susceptibility to photoinhibition increased with the depth of the collected sample. The 0.6 to 1 m fraction always had lower light requirements for light-saturated photosynthesis than the > 5 m size fraction within the same sample. Saturation intensities for the 1 to 5 m and 0.6 to 1 m size fractions were more similar whenSynechococcus spp. abundances were high in the 1 to 5 m fraction. The > 5 m fraction appeared to be the prime contributor to photoinhibitory features displayed in mixed samples (> 0.6 m) taken from the chlorophyll maxima. InSynechococcus spp.-dominated 0.6 to 1 and 1 to 5 m size fractions, cellular chlorophylla content increased 50- to 100-fold with depth and could be related to increases in maximum daytime rates of cellularP max at the base of the euphotic zone. Furthermore, the 0.6 to 1 m and > 5 m fractions sampled at the chlorophyll maximum in the warm-core eddy had lower light requirements for photosynthesis than comparable surface samples from the same station. Results suggest that photoadaptation in natural populations ofSynechococcus spp. is accomplished primarily by changing photosynthetic unit number, occuring in conjuction with other accommodations in the efficiency of photosynthetic light reactions.  相似文献   

12.
Studies off the west coast of Australia showed that the phyllosoma larvae of Panulirus cygnus George undergo a diurnal vertical migration, with light as an important factor influencing the depth distribution of all 9 phyllosoma stages. The early stages (I to III) occurred at the surface at night regardless of moonlight intensity, whereas late stages (VI to IX) concentrated at the surface only on nights with less than 5% of full moonlight. Midday peak densities of early-stage larvae occurred in the 30 to 60 m depth range while those of mid (IV to VI) and late stages were in the 50 to 120 m range. Depths of peak densities of larvae increased with distance offshore. The limits of vertical distribution of the phyllosoma remained within ranges of illuminance which were estimated to be in the order of 50 to 250 E m-2 sec-1 for early stages, 20 to 200 E m-2 sec-1 for mid stages and 5 to 50 E m-2 sec-1 for late stages. Minimal rates of net vertical movement were estimated for the larvae. Early stages exhibited mean net rates of ascent and descent of 13.7 and 13.0 m h-1, respectively, while the rates for mid stages were 16.0 and 16.6 m h-1 and for late stages 19.4 and 20.1 m h-1. Diurnal migrations and vertical distribution are shown to have a vital role in the relationships between circulation in the south-eastern Indian Ocean and the transport and dispersal of the phyllosoma larvae. The diurnal migrations of early stages place them at the surface at night, when offshore vectors of wind-driven ocean-surface transport dominate, and below the depth of wind-induced transport during the day, when offshore vectors are small or negative, thus accounting for their offshore displacement. Mid and late stages, because of their deeper daytime distribution and absence from the surface on moonlight nights, are predominantly subject to circulation features underlying the immediate surface layer. This is hypothesized to account for the return of the phyllosoma to areas near the continental shelf edge by subjecting them to a coastward mass transport of water which underlies the immediate surface layer.The western rock lobster is referred to as P. longipes or P. longipes cygnus in some of the literature quoted; these are synonymous with P. cygnus.  相似文献   

13.
Caulerpa paspaloides (Bory) Greville were collected during the winter and summer (1978 to 1979) from the Florida Keys, USA. Thalli collected during the winter photosynthesized more efficiently at low light intensities (Ic<1, Ik=38 Exm-2xs-1) than did thalli collected in the summer (Ic=13, Ik=111 Exm-2xs-1). Summer thalli exhibited higher Pmax values (2.20 mgO2xg-1 dry wtxh-1) than winter thalli (1.70 mg O2xg-1 dry wtxh-1). Rates of rhizome elongation and frond initiation were strongly inhibited by winter temperatures. The maximum lethal temperature for summer thalli was 37° to 38°C as measured by both growth and photosynthesis. No evidence of nitrogen or phosphorus limitation was found. Relatively minor reductions in salinity (3S) resulted in significant increases in rhizome apex motality. Results indicate that low winter temperatures are responsible for reduced winter growth rates previously reported for the Key Largo population. Increased photosynthetic efficiency at low light intensities and preferential maintenance of rhizome elongation over frond initiation appear to allow this tropical macroalga to optimize growth and survival during the winter.  相似文献   

14.
Marine Synechococcus spp. are sufficiently abundant to make a significant contribution to primary productivity in the ocean. They are characterized by containing high cellular levels of phycoerythrin which is highly fluorescent in vivo. We sought (Jan.–Apr., 1984) to determine the adaptive photosynthetic features of two clonal types of Synechococcus spp., and to provide a reliable physiological basis for interpreting remote sensing data in terms of the biomass and productivity of this group in natural assemblages. It was found that the two major clonal types optimize growth and photosynthesis at low photon flux densities by increasing the numbers of photosynthetic units per cell and by decreasing photosynthetic unit size. The cells of clone WH 7803 exhibited dramatic photoinhibition of photosynthesis and reduction in growth rate at high photon flux densities, accompanied by a large and significant increase in phycoerythrin fluorescence. Maximal photosynthesis of cells grown under 10–50 E m-2 s-1 was reduced by 20 to 30% when the cells were exposed to photon flux densities greater than 150 E m-2 s-1. However, steady-state levels of photosynthesis maintained for brief periods under these conditions were higher than those of cells grown continuously at high photon flux densities. No photoinhibition occurred in clone WH 8018 and rates of photosynthesis were greater than in WH 7803. Yields of in-vivo phycoerythrin fluorescence under all growth photon flux densities were lower in clone WH 8018 compared to clone WH 7803. Since significant inverse correlations were obtained between phycoerythrin fluorescence and Pmax and for both clones grown in laboratory culture, it may be possible to provide a reliable means of assessing the physiological state, photosynthetic capacity and growth rate of Synechococcus spp. in natural assemblages by remote sensing of phycoerythrin fluorescence. Poor correlations between phycoerythrin fluorescene and pigment content indicate that phycoerythrin fluorescence may not accurately estimate Synechococcus spp. biomass based on pigment content alone.  相似文献   

15.
Growth and photosynthetic properties of the marine dinoflagellate Amphidinium carterae Hulbert were examined under continuous illumination in batch cultures at four different irradiances between 2 and 150 E m-2 s-1. The slope of both cell- and Chl a-based photosynthesis versus the irradiance curves was greatest for cells grown at 15 E m-2 s-1. The relative Chl a values cell-1 were 1, 1.5 and 2 for cultures grown at 150, 80 and 15 E m-2 s-1, respectively. A low-temperature (-196°C) fluorescence technique was used to examine cells for photoinhibiton. Photoinhibition was greatest for cells grown at 150 E m-2 s-1. However, significant photoinhibition of this species was noted even at 80 E m-2 s-1. No significant difference in the fluorescence pattern was found between cells grown at 2 and 15 E m-2 s-1. Time course studies indicate that photoinhibition may occur within 2 h following exposure to 350 E m-2 s-1 in cells grown at 15 E m-2 s-1 and is reversible when light levels are lowered within 4 h. The ecological significance of phytoplankton unable to cope with excess photosynthetic excitation energy is discussed.  相似文献   

16.
The effects of temperature, salinity, growth irradiance and diel periodicity of incident irradiance on photosynthesis-irradiance (P-I) relationships were examined in natural populations of sea-ice microalgae from McMurdo Sound in the austral spring of late 1984. Both P m b (photosynthetic rate at optimum irradiance) and b (initial slope or P-I curve) were temperature-dependent reaching optimal rates at approximately +6° and +2°C, respectively. P-I relationships showed little difference at 20 and 33 S; however, no measurable photosynthesis by sea-ice microalgae was detected in a 60 S solution of brine collected from the upper layers of congelation ice. Although diel periodicity characteristic of the under-ice light field appeared to have little effect on P-I relationships, changes in growth irradiance had a profound effect. An increase in growth irradiance from 7 E m-2 s-1 (ambient) to 35 or 160 E m-2 s-1 resulted in a transient three-fold increase in P m b and I k (index of photoadaptation) during the first four days, followed by a sharp decline. The effects of these environmental factors on ice algal photosynthesis may influence the distribution of microalgae in sea-ice environments.  相似文献   

17.
Sea anemones (Aiptasia pulchella) containing zooxanthellae (Symbiodinium microadriaticum) were maintained in a long-term laboratory culture on a 12 h light (100 E m-2 s-1):12 h dark cycle. Photosynthetic oxygen production was measured for the symbiotic association and for freshlyisolated zooxanthellae. Light utilization efficiencies () were similar for both sets of zooxanthellae, suggesting negligible shading of zooxanthellae by animal tissue in this association. Whereas freshly-isolated zooxanthellae were photoinhibited at high irradiances (800 to 1 800 E m-2 s-1), zooxanthellae in the host continued to function at photosynthetic capacity. Time of day may influence photosynthetic measurements in symbiotic organisms, as it was found that photosynthesis in A. pulchella followed a diel periodicity at both light-saturating (1 200 E m-2 s-1) and subsaturating (150 E m-2 s-1) irradiances. There was a peak period of photosynthesis between 12.00 and 14.00 hrs. Light stimulated dark respiration rates of A. pulchella. Dark respiration of sea anemones increased somewhat towards the end of the light cycle and was always greater after exposure to high irradiances.  相似文献   

18.
Gonyaulax poledra Stein was transferred at different cell densities from increasingly nutrient-limited low-light (LL, 80 E m-2 s-1) batch-cultures to high-light (HL, 330 E m-2 s-1) growth conditions. Several age-dependent differences in HL-adaptation strategies were apparent. Short-term (3h) susceptibility to photosynthetic photoinhibition increased with culture age, with light-limited rates of photosynthesis exhibiting greater photosuppression than light-saturated rates at all stages of growth. These shortterm changes were not accompanied by photobleaching of chlorophyll but were directly related to age-dependent photoinactivation of Photosystem II electron-transport rates. The capacity of electron transport by Photosystem I was only slightly affected. Prolonged exposure of LL log-phase cells to HL conditions did induce photobleaching of chlorophyll associated with increased cell volume, a transient decrease of organic carbon and nitrogen content, enhanced cellular-, carbon-and chlorophyll-based rates of light-saturated photosynthesis (P max) and suppressed cellular rates of light-limited photosynthesis. As a result, the density of LL log-phase cells doubled and their cellular photosynthetic performance nearly tripled within 1 d of HL exposure while cellular respiratory demands remained unchanged. By contrast, prolonged HL incubation of LL stationary populations induced a transitory burst in cell division and a large reduction in cell volume, leading to a short-term increase in volume-based organic carbon and nitrogen content. Despite reduced cell volume and lowered carbon demand, the cellular-, carbon-and chlorophyll-based rates of P max in nondividing populations fell by 64, 48 and 27%, respectively, over a 4 d exposure to HL, while light-limited rates were almost fully suppressed within 1 d and chlorophyll a content was reduced by 56%. As a result, the photosynthetic performance of LL-aged cells declined immediately under HL conditions. Addition of inorganic nutrients to LL stationary cultures at the time of HL transfer led to immediate and complete suppression of photosynthesis and cell lysis within 1 d. Addition of nutrients following transfer to HL induced cell responses intermediate to those described for LL log and aged cells exposed to HL. Results support the view that declining nutrient-status impairs HL photoadaptive responses in phytoplankton populations and that the rate and pattern of photoadaptive responses may be used as physiological growth indicators in field studies. The study was conducted from March 1981 to May 1983.  相似文献   

19.
Assimilation rates of 15N-labelled ammonium, urea, and nitrate by plankton in the upper euphotic zone were measured in 2 summer, 2 winter, and 1 spring cruise in the central North Pacific Ocean. Average rates of ammonium plus urea assimilation could not be determined precisely, but were estimated to be 7 to 25 g-at. N m-3 day-1. Indirect evidence suggested that non-photosynthetic microorganisms contributed to these rates. Nitrate assimilation was negligible in the upper waters considered in this report (above the chlorophyll maximum and the nutricline). Potential, nitrate-saturated rates were in the range 1 to 8 g-at. N m-3 day-1. Seasonal comparison showed lowest rates of both carbon and nitrogen assimilation rates per chlorophyll a in winter.  相似文献   

20.
Harland  A. D.  Davies  P. S. 《Marine Biology》1995,123(4):715-722
Dark respiration of the symbiotic sea anemone Anemonia viridis (Forskäl) was observed to increase by 34% when anemones were exposed to hyperoxic sea water (150% oxygen saturation) overnight, and by 39% after exposure to 6 h in the light at a saturating irradiance of 300 E m-2 s-1 at normoxia (100% oxygen saturation). No increase due to light stimulation was observed in aposymbiotic control anemones. In darkness, the oxygen concentration of the coelenteric fluid was hypoxic. However, within 10 min of anemones being illuminated, coelenteric fluid was hyperoxic, and it remained elevated throughout a 12 h light period. When measured over a 24 h period (12 h light: 12 h dark), the dark respiration rate increased gradually over the first 6 h of the light period until it was 35% above the dark night-time resting rate. It remained elevated throughout the remaining light period and for 2 h into the following dark period, after which it fell back to the resting rate. Gross photosynthesis (P gross) increased significantly when anemones were exposed to either hyperoxia (150% oxygen saturation) or 300 E m-2 s-1 at normoxia. This increase was not observed when symbiotic anemones were illuminated at a low-light intensity of 100 E m-2 s-1. The results of this study suggest that respiration in the dark is limited by oxygen diffusion and that normal respiration is restored in the daytime by utilisation of the oxygen released by photosynthesis. Furthermore, it appears that the increased respiration following exposure to high-light intensities provides a CO2-rich intracellular environment which further enhances the photosynthetic rate of the zooxanthellae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号