首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The chemical processes responsible for production of photochemical oxidants within the troposphere have been the subject of laboratory and field study throughout the last three decades. During the same period, models to simulate the atmospheric chemistry, transport and deposition of ozone (O(3)) from individual urban sources and from regions have been developed. The models differ greatly in the complexity of chemical schemes, in the underlying meteorology and in spatial and temporal resolution. Input information from land use, spatial and temporally disaggregated emission inventories and meteorology have all improved considerably in recent years and are not fully implemented in current models. The development of control strategies in both North America and Europe to close the gaps between current exceedances of environmental limits, guide values, critical levels or loads and full compliance with these limits provides the focus for policy makers and the support agencies for the research. The models represent the only method of testing a range of control options in advance of implementation. This paper describes currently applied models of photochemical oxidant production and transport at global and regional scales and their ability to simulate individual episodes as well as photochemical oxidant climatology. The success of current models in quantifying the exposure of terrestrial surfaces and the population to potentially damaging O(3) concentrations (and dose) is examined. The analysis shows the degree to which the underlying processes and their application within the models limit the quality of the model products.  相似文献   

2.
The role of halogen species in the troposphere   总被引:7,自引:0,他引:7  
Platt U  Hönninger G 《Chemosphere》2003,52(2):325-338
While the role of reactive halogen species (e.g. Cl, Br) in the destruction of the stratospheric ozone layer is well known, their role in the troposphere was investigated only since their destructive effect on boundary layer ozone after polar sunrise became obvious. During these 'Polar Tropospheric Ozone Hole' events O(3) is completely destroyed in the lowest approximately 1000 m of the atmosphere on areas of several million square kilometres. Up to now it was assumed that these events were confined to the polar regions during springtime. However, during the last few years significant amounts of BrO and Cl-atoms were also found outside the Arctic and Antarctic boundary layer. Recently even higher BrO mixing ratios (up to 176 ppt) were detected by optical absorption spectroscopy (DOAS) in the Dead Sea basin during summer. In addition, evidence is accumulating that BrO (at levels around 1-2 ppt) is also occurring in the free troposphere at all latitudes.In contrast to the stratosphere, where halogens are released from species, which are very long lived in the troposphere, likely sources of boundary layer Br and Cl are autocatalytic oxidation of sea salt halides (the 'Bromine Explosion'), while precursors of free tropospheric BrO and coastal IO probably are short-lived organo-halogen species. At the levels suggested by the available measurements reactive halogen species have a profound effect on tropospheric chemistry: In the polar boundary layer during 'halogen events' ozone is usually completely lost within hours or days. In the free troposphere the effective O(3)-losses due to halogens could be comparable to the known photochemical O(3) destruction. Further interesting consequences include the increase of OH levels and (at low NO(X)) the decrease of the HO(2)/OH ratio in the free troposphere.  相似文献   

3.
The updated regulatory framework for demonstrating that future 8-hr ozone (O3) design values will be at or below the National Ambient Air Quality Standards (NAAQS) provides guidelines for the development of a State Implementation Plan (SIP) that includes methods based on photochemical modeling and analytical techniques. One of the suggested approaches is the relative reduction factor (RRF) for estimating the efficacy of emission reductions. In this study, the sensitivity of model-predicted responses towards emission reductions to the choice of meteorology and chemical mechanisms was examined. While the different modeling simulations generally were found to be in agreement on whether predicted future-year design values would be above or below the NAAQS for 8-hr O3 at a majority of the monitoring locations in the eastern United States, differences existed for a small percentage of monitors (approximately 6.4%). Another issue investigated was the ability of the attainment demonstration procedure to predict changes in monitored O3 design values. A retrospective analysis was performed by comparing predicted O3 design values from model simulations using emission estimates for 1996 and 2001 with monitored O3 design values for 2001. Results indicated that an average gross error of approximately 5 ppb was present between modeled and observed design values and that, at approximately 27% of all sites, model-predicted and observed design values disagreed as to whether the design value was above or below the NAAQS. Retrospective analyses such as the one presented in this study can provide valuable insights into the strengths and limitations of modeling and analysis techniques used to predict future design values over time periods of a decade or more for the purpose of developing SIPs. Furthermore, such analyses could provide avenues for improvement and added confidence in the use of the RRF approach for addressing attainment of the NAAQS.  相似文献   

4.
For computational reasons, evaluations of NO(x) emission controls usually concentrate on either episodic or annual impacts on pollution or deposition levels. However, previously published model results indicate that the consequences of NO(x) controls can be quite different on these different time scales. In this paper we analyse the impact of a consistent set of NO(x) control scenarios on both the episodic and annual time-scales. Using similar models, we compute levels of episode peak O(3) and NO(2) and annual NO(y)-N and total N deposition at three locations in Europe due to six emission scenarios derived from OECD estimates. An NO(x) control scenario which reduces European emissions by 63%, only results in total annual N deposition reductions of 19, 36 and 26% at the three locations examined because of the influence of ammonia-nitrogen deposition. The same scenario results in either increases or decreases in episode peak O(3) due to the influence of hydrocarbons. Emission reduction strategies should take into account not only NO(x) emissions, but emissions of other pollutants, such as hydrocarbons and ammonia.  相似文献   

5.
To examine factors influencing long-term ozone (O3) exposures by children living in urban communities, the authors analyzed longitudinal data on personal, indoor, and outdoor O3 concentrations, as well as related housing and other questionnaire information collected in the one-year-long Harvard Southern California Chronic Ozone Exposure Study. Of 224 children contained in the original data set, 160 children were found to have longitudinal measurements of O3 concentrations in at least six months of 12 months of the study period. Data for these children were randomly split into two equal sets: one for model development and the other for model validation. Mixed models with various variance-covariance structures were developed to evaluate statistically important predictors for chronic personal ozone exposures. Model predictions were then validated against the field measurements using an empirical best-linear unbiased prediction technique. The results of model fitting showed that the most important predictors for personal ozone exposure include indoor O3 concentration, central ambient O3 concentration, outdoor O3 concentration, season, gender, outdoor time, house fan usage, and the presence of a gas range in the house. Hierarchical models of personal O3 concentrations indicate the following levels of explanatory power for each of the predictive models: indoor and outdoor O3 concentrations plus questionnaire variables, central and indoor O3 concentrations plus questionnaire variables, indoor O3 concentrations plus questionnaire variables, central O3 concentrations plus questionnaire variables, and questionnaire data alone on time activity and housing characteristics. These results provide important information on key predictors of chronic human exposures to ambient O3 for children and offer insights into how to reliably and cost-effectively predict personal O3 exposures in the future. Furthermore, the techniques and findings derived from this study also have strong implications for selecting the most reliable and cost-effective exposure study design and modeling approaches for other ambient pollutants, such as fine particulate matter and selected urban air toxics.  相似文献   

6.
There is a fast growing and an extremely serious international scientific, public and political concern regarding man's influence on the global climate. The decrease in stratospheric ozone (O3) and the consequent possible increase in ultraviolet-B (UV-B) is a critical issue. In addition, tropospheric concentrations of 'greenhouse gases' such as carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) are increasing. These phenomena, coupled with man's use of chlorofluorocarbons (CFCs), chlorocarbons (CCs), and organo-bromines (OBs) are considered to result in the modification of the earth's O3 column and altered interactions between the stratosphere and the troposphere. A result of such interactions could be the global warming. As opposed to these processes, tropospheric O3 concentrations appear to be increasing in some parts of the world (e.g. North America). Such tropospheric increases in O3 and particulate matter may offset any predicted increases in UV-B at those locations. Presently most general circulation models (GCMs) used to predict climate change are one- or two-dimensional models. Application of satisfactory three-dimensional models is limited by the available computer power. Recent studies on radiative cloud forcing show that clouds may have an excess cooling effect to compensate for a doubling of global CO2 concentrations. There is a great deal of geographic patchiness or variability in climate. Use of global level average values fails to account for this variability. For example, in North America: 1. there may be a decrease in the stratospheric O3 column (1-3%); however, there appears to be an increase in tropospheric O3 concentrations (1-2%/year) to compensate up to 20-30% loss in the total O3 column; 2. there appears to be an increase in tropospheric CO2, N2O and CH4 at the rate of roughly 0.8%, 0.3% and 1-2%, respectively, per year; 3. there is a decrease in erythemal UV-B; and 4. there is a cooling of tropospheric air temperature due to radiative cloud forcing. The effects of UV-B, CO2 and O3 on plants have been studied under growth chamber, greenhouse and field conditions. Few studies, if any, have examined the joint effects of more than one variable on plant response. There are methodological problems associated with many of these experiments. Thus, while results obtained from these studies can assist in our understanding, they must be viewed with caution in the context of the real world and predictions into the future. Biomass responses of plants to enhanced UV-B can be negative (adverse effect); positive (stimulatory effect) or no effect (tolerant). Sensitivity rankings have been developed for both crop and tree species. However, such rankings for UV-B do not consider dose-response curves. There are inconsistencies between the results obtained under controlled conditions versus field observations. Some of these inconsistencies appear due to the differences in responses between cultivars and varieties of a given plant species; and differences in the experimental methodology and protocol used. Nevertheless, based on the available literature, listings of sensitive crop and native plant species to UV-B are provided. Historically, plant biologists have studied the effects of CO2 on plants for many decades. Experiments have been performed under growth chamber, greenhouse and field conditions. Evidence is presented for various plant species in the form of relative yield increases due to CO2 enrichment. Sensitivity rankings (biomass response) are agein provided for crops and native plant species. However, most publications on the numerical analysis of cause-effect relationships do not consider sensitivity analysis of the mode used. Ozone is considered to be the most phytotoxic regional scale air pollutant. In the pre-occupation of loss in the O3 column, any increases in tropospheric O3 concentrations may be undermined relative to vegetation effects. As with the other stress factors, the effects of O3 have been studied both under controlled and field conditions. Thboth under controlled and field conditions. The numerical explanation of cause-effect relationships of O3 is a much debated subject at the present time. Much of the controversy is directed toward the definition of the highly stochastic, O3 exposure dynamics in time and space. Nevertheless, sensitivity rankings (biomass response) are provided for crops and native vegetation. The joint effects of UV-B, CO2 and O3 are poorly understood. Based on the literature of plant response to individual stress factors and chemical and physical climatology of North America, we conclude that nine different crops may be sensitive to the joint effects: three grain and six vegetable crops (sorghum, oat, rice, pea, bean, potato, lettuce, cucumber and tomato). In North America, we consider Ponderosa and loblolly pines as vulnerable among tree species. This conclusion should be moderated by the fact that there are few, if any, data on hardwood species. In conclusion there is much concern for global climate change and its possible effects on vegetation. While this is necessary, such a concern and any predictions must be tempered by the lack of sufficient knowledge. Experiments must be designed on an integrated and realistic basis to answer the question more definitively. This would require very close co-operation and communication among scientists from multiple disciplines. Decision makers must realize this need.  相似文献   

7.
Bahm K  Khalil MA 《Chemosphere》2004,54(2):143-166
A chemistry model of the global troposphere is presented which focuses on the hydroxyl radical, OH. Global distributions of OH are calculated based on known chemical reaction pathways, experimentally measured values of precursor species O3, H2O, NOx (defined as NO+NO2), CO, CH4, and actinic flux (which includes the effects of cloud cover and O3 column absorption). Model grid resolution is 1 km in altitude by 10 degrees latitude, and zonally divided into land or ocean. Species are calculated as seasonal averages. Global annual mean OH in the troposphere (up to 14 km altitude) is calculated to be 9.2 x 10(5) molcm(-3) with averages of 9.8 x 10(5) in the northern hemisphere, and 8.5 x 10(5) in the southern hemisphere. Global CO and CH(4) oxidation rates by OH are calculated to be 1840 Tgyear(-1) and 580 Tgyear(-1), respectively. OH is found to be most sensitive to O3 and H2O concentrations, as well as to the photolysis rate of O3 to O1D. Sensitivity of CO and CH4 oxidation rates to cloud presence shows an inverse relationship to cloud amount and optical depth. Model results are shown to be consistent with results from two other published models.  相似文献   

8.
Field and laboratory experiments were conducted to examine the effects of road salt (NaCI) on stream macroinvertebrates. Field studies investigated leaf litter processing rates and functional feeding group composition at locations upstream and downstream from point source salt inputs in two Michigan, USA streams. Laboratory studies determined the effects of increasing NaCl concentrations on aquatic invertebrate drift, behavior, and survival. Field studies revealed that leaves were processed faster at upstream reference sites than at locations downstream from road salt point source inputs. However, it was sediment loading that resulted in partial or complete burial of leaf packs, that affected invertebrate activity and confounded normal leaf pack colonization. There were no significant differences that could be attributed to road salt between upstream and downstream locations in the diversity and composition of invertebrate functional feeding groups. Laboratory drift and acute exposure studies demonstrated that drift of Gammarus (Amphipoda) may be affected by NaCl at concentrations greater than 5000 mg/l for a 24-h period. This amphipod and two species of limnephilid caddisflies exhibited a dose response to salt treatments with 96-h LC50 values of 7700 and 3526 mg NaCl/l, respectively. Most other invertebrate species and individuals were unaffected by NaCl concentrations up to 10,000 mg/l for 24 and 96 h, respectively.  相似文献   

9.
Developing exposure estimates is a challenging aspect of investigating the health effects of air pollution. Pollutant levels recorded at centrally located ambient air quality monitors in a community are commonly used as proxies for population exposures. However, if ample intraurban spatial variation in pollutants exists, city-wide averages of concentrations may introduce exposure misclassification. We assessed spatial heterogeneity of particulate matter with an aerodynamic diameter < or = 10 microm (PM10) and ozone (O3) and evaluated implications for epidemiological studies in S?o Paulo, Brazil, using daily (24-hr) and daytime (12-hr) averages and 1-hr daily maximums of pollutant levels recorded at the regulatory monitoring network. Monitor locations were also analyzed with respect to a socioeconomic status index developed by the municipal government. Hourly PM10 and O3 data for the Sāo Paulo Municipality and Metropolitan Region (1999-2006) were used to evaluate heterogeneity by comparing distance between monitors with pollutants' correlations and coefficients of divergence (CODs). Both pollutants showed high correlations across monitoring sites (median = 0.8 for daily averages). CODs across sites averaged 0.20. Distance was a good predictor of CODs for PM10 (p < 0.01) but not O3, whereas distance was a good predictor of correlations for O3 (p < 0.01) but not PM10. High COD values and low temporal correlation indicate a spatially heterogeneous distribution of PM10. Ozone levels were highly correlated (r > or = 0.75), but high CODs suggest that averaging over O3 levels may obscure important spatial variations. Of municipal districts in the highest of five socioeconomic groups, 40% have > or = 1 monitor, whereas districts in the lowest two groups, representing half the population, have no monitors. Results suggest that there is a potential for exposure misclassification based on the available monitoring network and that spatial heterogeneity depends on pollutant metric (e.g., daily average vs. daily 1-hr maximum). A denser monitoring network or alternative exposure methods may be needed for epidemiological research. Findings demonstrate the importance of considering spatial heterogeneity and differential exposure misclassification by subpopulation.  相似文献   

10.
There is an ongoing debate as to which components of the ambient ozone (O3) exposure dynamics best explain adverse crop yield responses. A key issue is regarding the importance of peak versus mid-range hourly ambient O3 concentrations. While in this paper the importance of peak atmospheric O3 concentrations is not discounted, if they occur at a time when plants are conducive for uptake, the corresponding importance of more frequently occurring mid-range O3 concentrations is described. The probability of co-occurrence of high O3 concentrations and O3 uptake limiting factors is provided using coherent data sets of O3 concentration, air temperature, air humidity, mean horizontal wind velocity and global radiation measured at representative US and German air quality monitoring sites. Using the PLant-ATmosphere INteraction (PLATIN) model, the significance of the aforementioned meteorological parameters on ozone uptake is examined. In addition, the limitations of describing the O3 exposure for plants under ambient, chamberless conditions by SUM06, AOT40 or W126 exposure indices are discussed.  相似文献   

11.
In the Hohenheim experiment young spruce (Picea abies L. Karst.) were exposed to low levels of SO(2) and/or O(3) and acid precipitation. At the end of a five-year experimental period (1983-88) the following physiological parameters were examined: water soluble thiols, ascorbic acid, glutathionereductase activity and pigment content. Exposure to SO(2), leads to an increase in thiol content, to a slight decrease of ascorbic acid and to a pronounced decrease of pigments. O(3) exposure increases the content of ascorbic acid and decreases the thiols and the glutathione-reductase activity with no change in the pigment content. The combined exposure to SO(2), and O(3) results in the most distinct deviations compared to the control chamber response. These needles show the highest increase of ascorbic acid and thiols, the dry weight is decreased as is the glutathione-reductase activity and the pigment content is reduced. Consequences of these physiological alterations for the plant's health are discussed.  相似文献   

12.
The natural background in the ozone concentration at rural locations in the United States and western Europe has been estimated by use of several approaches. The approaches utilized include the following: (1) historical trends in ozone concentration measurements, (2) recent ozone measurements at remote sites, (3) use of tracers of air originating in the stratosphere or upper troposphere and (4) results from applications of tropospheric photochemical models. While each of these approaches has its own limitations it appears that the natural background of ozone during the warmer months of the year is in the range of 10 to 20 ppb. Most of the ozone originating in the lower stratosphere or upper troposphere is lost by chemical or physical removal processes as well as undergoing dilution by air in the lower troposphere before reaching ground level rural locations. Lower tropospheric photochemical processes, those below 5 km, are likely to account for most of the ozone measured at rural locations during the warmer months of the year.

A key aspect to improved quantitation of the contributions from lower tropospheric photochemical processes to ozone concentrations continues to be more extensive atmospheric measurements of the distribution of reactive species of nitrogen. The emission densities of anthropogenic sources of NOx are known to be highly variable over populated areas of continents as well as between continental areas and the oceans. The emission densities of biogenic sources of NOx are small, likely to be highly variable, but poorly quantitated. These wide variations indicate the need for use of three dimensional tropospheric photochemical models over large continental regions.

Available results do indicate higher efficiencies for ozone formation at lower NOx concentrations, especially below 1 ppb.  相似文献   

13.
In researching health effects of air pollution, pollutant levels from fixed-site monitors are commonly assigned to the subjects. However, these concentrations may not reflect the exposure these individuals actually experience. A previous study of ozone (O3) exposure and lung function among shoe-cleaners working in central Mexico City used fixed-site measurements from a monitoring station near the outdoor work sites as surrogates for personal exposure. The present study assesses the degree to which these estimates represented individual exposures. In 1996, personal O3 exposures of 39 shoe-cleaners working outdoors were measured using an active integrated personal sampler. Using mixed models, we assessed the relationship between measured personal O3 exposure and ambient O3 measurements from the fixed-site monitoring station. Ambient concentrations were approximately 50 parts per billion higher, on average, than personal exposures. The association between personal and ambient O3 was highly significant (mixed model slope p < 0.0001). The personal/ambient ratio was not constant, so use of the outdoor monitor would not be appropriate to rank O3 exposure and evaluate health effects between workers. However, the strong within-worker longitudinal association validates previous findings associating day-to-day changes in fixed-site O3 levels with adverse health effects among these shoe-cleaners and suggests fixed-site O3 monitors may adequately estimate exposure for other repeated-measure health studies of outdoor workers.  相似文献   

14.
Photochemical oxidants: state of the science   总被引:7,自引:0,他引:7  
Atmospheric photochemical processes resulting in the production of tropospheric ozone (O(3)) and other oxidants are described. The spatial and temporal variabilities in the occurrence of surface level oxidants and their relationships to air pollution meteorology are discussed. Models of photooxidant formation are reviewed in the context of control strategies and comparisons are provided of the air concentrations of O(3) at select geographic locations around the world. This overall oxidant (O(3)) climatology is coupled to human health and ecological effects. The discussion of the effects includes both acute and chronic responses, mechanisms of action, human epidemiological and plant population studies and briefly, efforts to establish cause-effect relationships through numerical modeling. A short synopsis is provided of the interactive effects of O(3) with other abiotic and biotic factors. The overall emphasis of the paper is on identifying the current uncertainties and gaps in our understanding of the state of the science and some suggestions as to how they may be addressed.  相似文献   

15.
This paper describes a background for the North American Research Strategy for Tropospheric Ozone (NARSTO) cooperative program integrating studies of O3 and PM2.5. It discusses several important aspects for rationalizing NARSTO's trinational investigative approach, including (1) an outlook on the state of knowledge about fine particles in the troposphere and their origins in Canada, Mexico, and the United States; (2) the need for enhancement and strengthening of key field measurements in relation to tropospheric chemistry and a health effects component; and (3) the use of a central theme for advancing air quality modeling using evolving techniques to integrate and guide key process-oriented field campaigns. The importance of organizing a scientific program to acquire "policy-relevant" information is stressed, noting cooperative research directions that address combined PM2.5 and O3 issues, illustrated through exploration of hypothetical pathways of PM2.5 response to choices of O3 and PM precursor emission reductions. The information needed for PM2.5 research is noted to intersect in many cases with those of O3, but diverge in other cases. Accounting for these distinctions is important for developing NARSTO's strategy over the next decade.  相似文献   

16.
The U.S. Environmental Protection Agency provides guidelines for demonstrating that future 8-hr ozone (O3) design values will be at or below the National Ambient Air Quality Standards on the basis of the application of photochemical modeling systems to simulate the effect of emission reductions. These guidelines also require assessment of the model simulation against observations. In this study, we examined the link between the simulated relative responses to emission reductions and model performance as measured by operational evaluation metrics, a part of the model evaluation required by the guidance, which often is the cornerstone of model evaluation in many practical applications. To this end, summertime O3 concentrations were simulated with two modeling systems for both 2002 and 2009 emission conditions. One of these two modeling systems was applied with two different parameterizations for vertical mixing. Comparison of the simulated base-case 8-hr daily maximum O3 concentrations showed marked model-to-model differences of up to 20 ppb, resulting in significant differences in operational model performance measures. In contrast, only relatively minor differences were detected in the relative response of O3 concentrations to emission reductions, resulting in differences of a few ppb or less in estimated future year design values. These findings imply that operational model evaluation metrics provide little insight into the reliability of the actual model application in the regulatory setting (i.e., the estimation of relative changes). In agreement with the guidance, it is argued that more emphasis should be placed on the diagnostic evaluation of O3-precursor relationships and on the development and application of dynamic and retrospective evaluation approaches in which the response of the model to changes in meteorology and emissions is compared with observed changes. As an example, simulated relative O3 changes between 1995 and 2007 are compared against observed changes. It is suggested that such retrospective studies can serve as the starting point for targeted diagnostic studies in which individual aspects of the modeling system are evaluated and refined to improve the characterization of observed changes.  相似文献   

17.
Sea duck populations have declined in North America. Contaminants, especially metals, have been listed as possible contributing factors. Sea ducks are long-lived. Thus, individuals chronically exposed to elevated metal levels may be at greatest risk. Information about long-term exposure (> or =1year) of individuals to metals is absent. To address this information gap, we examined year-to-year correlations among individual White-Winged Scoters and King Eiders in levels of blood cadmium, lead, mercury and selenium. Positive correlations (r> or =0.43), were found in six, five, five and two of seven correlations for cadmium, selenium, lead and mercury. Thus, certain individuals of these species may be exposed over two or more years to higher levels of cadmium, selenium and lead (but apparently not mercury) than other individuals. Single blood samples are appropriate metrics of exposure for studies that examine long-term effects of certain metals on these birds.  相似文献   

18.
Californians are exposed daily to concentrations of ozone (O3) that are among the highest in the United States. Recently, the state adopted a new 8-hr ambient standard of 0.070 ppm, more stringent than the current federal standard. The new standard is based on controlled human studies and on dozens of epidemiologic studies reporting associations between O3 at current ambient levels and a wide range of adverse health outcomes. Clearly, the new O3 standards will require further reductions in the precursor pollutants and additional expenditures for pollution control. Therefore, it is important to quantify the incremental health benefits of moving from current conditions to the new California standard. In this paper, a standard methodology is applied to quantify the health benefits associated with O3 concentration reductions in California. O3 concentration reductions are estimated using ambient monitoring data and a proportional rollback approach in which changes are specific to each air basin, and control strategies may impact concentrations both below and above the standard. Health impacts are based on published epidemiologic studies, including O3-related mortality and morbidity, and economic values are assigned to these outcomes based on willingness-to-pay and cost-of-illness studies. Central estimates of this research indicate that attaining the California 8-hr standard, relative to current concentrations, would result in annual reductions of 630 cases of premature mortality, 4200 respiratory hospital admissions, 660 pediatric emergency room visits for asthma, 4.7 million days of school loss, and 3.1 million minor restricted activity days, with a median estimated economic value of dollar 4.5 billion. Sensitivity analyses indicate that these findings are robust with respect to exposure assessment methods but are influenced by assumptions about the slope of the concentration-response function in threshold models and the magnitude of the O3-mortality relationship. Although uncertainties exist for several components of the methodology, these results indicate that the benefits of reducing O3 to the California standard may be substantial and that further research on the shape of the O3-mortality concentration-response function and economic value of O3-related mortality would best reduce these uncertainties.  相似文献   

19.
Ozone impacts on cotton: towards an integrated mechanism   总被引:5,自引:0,他引:5  
Vegetation removes tropospheric ozone (O(3)) mainly through uptake by stomata. O(3) reduces growth, photosynthesis, and carbohydrate allocation. Effects on mesophyll photosynthesis, may reducing carbohydrate source strength and, indirectly, carbohydrate translocation. Alternatively direct translocation, itself, could explain all of these observations. O(3)-reduced root proliferation inhibits exploitation of soil resources and interferes with underground carbon sequestration. Simulations with cotton suggest O(3)-disrupted root development could indirectly reduce shoot photosynthesis. Strong evidence for O(3) impacts on both carbon assimilation and carbon translocation exists, but data determining the primacy of direct or indirect O(3) effects on either or both processes remain inconclusive. Phloem loading may be particularly sensitive to O(3). Further research on metabolic feedback control of carbon assimilation and phloem loading activity as affected by O(3) exposure is required.  相似文献   

20.
Weekday/weekend ozone differences: what can we learn from them?   总被引:1,自引:0,他引:1  
A national analysis of weekday/weekend ozone (O3) differences demonstrates significant variation across the country. Weekend 1-hr or 8-hr maximum O3 varies from 15% lower than weekday levels to 30% higher. The weekend O3 increases are primarily found in and around large coastal cities in California and large cities in the Midwest and Northeast Corridor. Both the average and the 95th percentile of the daily 1-hr and 8-hr maxima exhibit the same general pattern. Many sites that have elevated O3 also have higher O3 on weekends even though traffic and O3 precursor levels are substantially reduced on weekends. Detailed studies of this phenomenon indicate that the primary cause of the higher O3 on weekends is the reduction in oxides of nitrogen (NOx) emissions on weekends in a volatile organic compound (VOC)-limited chemical regime. In contrast, the lower O3 on weekends in other locations is probably a result of NOx reductions in a NOx-limited regime. The NOx reduction explanation is supported by a wide range of ambient analyses and several photochemical modeling studies. Changes in the timing and location of emissions and meteorological factors play smaller roles in weekend O3 behavior. Weekday/weekend temperature differences do not explain the weekend effect but may modify it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号