首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
使用2002-2007年西安市环境监测站监测的5个功能区PM10、SO2和NO2污染物日平均质量浓度和2006年、2007年时平均质量浓度资料,分析了春节期间西安城区及郊区主要污染物近地面质量浓度的时空变化特征.结果显示: 6年的PM10、SO2和NO2的春节期全市日平均质量浓度的平均值分别为0.217 2 mg/m3、0.067 8 mg/m3和0.041 7 mg/m3,比春节前偏高54.3%、35.8%和14.5%,比春节后偏高73.6%、21.6%和37.8%; 城区小寨PM10和SO2日平均质量浓度最大值分别达0.375 mg/m3和0.303 mg/m3; PM10时平均质量浓度最大值出现在郊区的草滩,高达0.759 mg/m3,SO2时平均质量浓度最大值出现在城区人口稠密的聚居区小寨,高达0.343 mg/m3.表明烟花爆竹燃放可导致近地面空气中PM10、SO2和NO2质量浓度上升,郊区的PM10上升最为显著,而城区PM10和SO2质量浓度上升均较为明显; 且烟花爆竹燃放对近地面污染物质量浓度的短时贡献可大大超出现有污染源的贡献,造成严重的大气污染.因此,春节期间有必要限制西安市烟花爆竹的燃放.  相似文献   

2.
燃放烟花爆竹对北京城区气溶胶细粒子的影响   总被引:9,自引:2,他引:9  
为了研究燃放烟花爆竹对空气中气溶胶细粒子污染的影响,采用TEOM于2003年1月31日-2月25日对PM2.5和PM10质量浓度和化学成分进行了研究,分析了春节期间北京城区气溶胶细粒子的污染特征.结果显示: 燃放烟花爆竹会导致空气中PM2.5在短时间内上升到很高的水平,最大小时平均质量浓度达549 μg/m3,平均每小时质量浓度增加100 μg/m3左右.并且随着PM2.5质量浓度的上升,PM2.5在PM10中的比例也明显上升,两者质量浓度小时平均值的比值最大可达0.9.稳定天气条件下,燃放高峰期过后随着粒径在2.5~10 μm之间的较粗粒子的沉降(约需3~4 h),PM10的质量浓度下降,但PM2.5/PM10的比值仍持续偏高.燃放烟花爆竹导致PM2.5中以燃烧为代表的元素(S、P、As)、部分金属元素(Al、Fe、Ti、Se、K)、可溶性离子成分以及OC的升高.这些成分与烟花爆竹的金属粉末、无机盐类,以及复杂的S、P化合物等主要成分吻合.  相似文献   

3.
利淑芬  巫楚 《环境与发展》2020,(1):237-237,239
爆竹声中一岁除,在春节期间燃放烟花爆竹这一传统习俗在我国有着悠久历史,可是,在春节期间大量集中燃放烟花爆竹会对空气质量造成严重的影响。本文对河源市2018年春节期间监测数据进行分析,探究燃放烟花爆竹对空气质量的影响,为春节期间烟花爆竹燃放管控提供技术参考。  相似文献   

4.
2007年春节燃放烟花爆竹时,在兰州市区和环境背景监测点同步连续采集TSP和PM10样品,并利用高效液相色谱和离子色谱方法对其进行多环芳烃和水溶性无机离子的分析.结果表明,PM10中的多环芳烃浓度比非燃放期平均质量浓度增加了78.7%.集中燃放烟花爆竹时,多环芳烃更容易沉积在相对较细的PM10中.同时,无机水溶性离子中K+比非燃放期质量浓度增加了92.8%,SO2-3的质量浓度增加了90.6%,NO-3的质量浓度增加了79.7%,Mg2+的质量浓度增加了79.1%.说明在燃放烟花爆竹时,对当地大气颗粒物中的多环芳烃和无机水溶性阴阳离子都会造成严重的空气污染.在燃放期PM10中多环芳烃质量浓度是TSP质量浓度的1.73倍,而在非燃放期结果恰好相反,多环芳烃质量浓度在TSP中高于PM10.从质量浓度数值的变化上也明显观察到,与多环芳烃相比,燃放烟花爆竹对无机水溶性离子的影响更大.在除夕夜大量集中燃放烟花爆竹时,所产生大量烟雾会对周边大气环境造成一定的污染和影响.  相似文献   

5.
北京城6区大气颗粒物质量浓度变化规律研究   总被引:5,自引:0,他引:5  
为较好地了解当前北京城6区大气颗粒物PM2.5和PM10质量浓度的污染水平及变化规律,根据2013年3月11日至2014年2月28日城6区12个空气质量实时监测点连续、实时的监测结果,构建多点位、完整时间序列的颗粒物质量浓度数据资料.应用数理统计分析手段,对当前北京城6区大气颗粒物质量浓度的频数分布、相关性和逐时变化特征进行分析,并结合全年实际气象特征,对引起大气颗粒物质量浓度变化的因素进行了初步探讨.结果表明,2013年3月至2014年2月北京城6区大气颗粒物污染较为严重,且PM2.5和PM10质量浓度具有特别显著的线性相关关系,全年相关系数达0.9,10年间无显著变化;二者年均值达91.7 μg/m3和116.9 μg/m3,分别超标162%和67%;二者质量浓度比达78.4%,10年间同比增长约20%.颗粒物质量浓度逐时变化受季节变化影响明显,总体呈现夜间最高、白天最低的趋势,变化周期为7~9h.研究表明,影响颗粒物质量浓度变化的因素包括春季的大风和生物粒子、夏季的湿热和降雨、秋季和冬季的逆温现象和降雪等气象因素及规律性的人为源因素.  相似文献   

6.
针对不同室外空气质量条件,利用MATLAB/Simulink分别对新回风比例不变、新风量不变改变回风量、回风量不变改变新风量的变风量空调系统室内PM_(2.5)质量浓度和CO2体积分数进行了模拟分析。模拟结果表明:对于新回风比例不变的系统,室内PM_(2.5)稳定质量浓度与室外PM_(2.5)质量浓度有关,而与回风量和额定回风量的比值R1无关;但室内PM_(2.5)质量浓度下降速度与R1有关。对于新风量不变改变回风量的系统,室内PM_(2.5)质量浓度主要受回风量影响。对于回风量不变改变新风量的系统,室外PM_(2.5)质量浓度和新风量是影响室内PM_(2.5)质量浓度的主要因素。  相似文献   

7.
北京机动车限行对空气质量的影响分析   总被引:2,自引:0,他引:2  
为减少机动车尾气排放,确保奥运期间的空气质量达到标准,北京市政府从奥运前就开始对在京机动车采取单双号限行措施.奥运结束后,为保证空气质量及缓解交通出行的路面拥堵状况,仍然进行按车牌尾号"每周停驶1天"的机动车限行政策.分析北京市近7年的空气质量状况,并着重分析奥运前后及限行期间的空气质量状况,将这7年的空气质量状况与限行同期进行对比,据此分析限行措施带来的NO2和可吸入颗粒物的减排效果.在限行政策实施期间,北京城市大气中的NO2和可吸入颗粒物的浓度均有所降低,其中以NO2的降低效果最为明显,说明北京市机动车限行政策的实行对空气质量的好转有一定贡献.  相似文献   

8.
选取北京24个PM_(2.5)监测站点2017年8月17日至21日逐小时PM_(2.5)质量浓度数据及16个市辖区的逐小时气象数据,建立了北京各区关于PM_(2.5)质量浓度的环境信息关联模型,并在此基础上分析了植被在PM_(2.5)与气象因素及区域污染的关联中发挥的作用。通过分析模型脉冲响应曲线的数值可以看出,绿化率与PM_(2.5)对相对湿度扰动的响应相关性最高(R2=0.71),其次为风速(R2=0.54),但绿化率与PM_(2.5)对温度扰动的响应的相关性不高。PM_(2.5)对风速扰动的响应最为迅速。绿化率越高的市辖区,PM_(2.5)对3种气象要素的响应越剧烈且越容易出现波动,PM_(2.5)对气象要素总扰动的响应的滞后期与绿化率有较强的相关性(R2=0.62)。对各区域PM_(2.5)质量浓度进行逐步回归分析,结果表明高植被覆盖的地区更不易受到其他区域污染物的影响。  相似文献   

9.
以南京市为例,利用空气污染指数API、气象数据和TERRA/AQUA卫星气溶胶光学厚度(AOD)产品,分析了南京市PM_(10)浓度的变化规律,在PM_(10)浓度与气象要素进行相关分析的基础上,初步建立了基于气象要素和AOD的PM_(10)浓度估算模型。结果表明,南京市PM_(10)浓度在每年11,12月或1月最高,7,8月最低,季节性变化表现为冬春季浓度最高,秋季其次,夏季最低,PM_(10)浓度有逐年下降的趋势,但年均值仍高于国家II级标准;除了大气混合层高度外,PM_(10)浓度与大气压、风速、气温、相对湿度、水汽压、能见度、气溶胶光学厚度都有较好的相关性;基于气象要素的PM_(10)浓度估算模型的绝对系数R~2为0.510、平均相对误差为26.04%,基于AOD的PM_(10)浓度估算模型以TERRA和AQUA卫星AOD平均值构建的最佳,绝对系数R~2为0.482、平均相对误差26.11%,两种模型对PM_(10)的预测预报具有一定的指示意义。  相似文献   

10.
11.
PM2.5能够透过人体组织,对健康产生重要影响,研究环境空气中PM2.5的污染特征具有实际意义。以遂宁市大气连续采样监测数据为基础,利用SPSS软件对可吸入颗粒物PM10和细颗粒物PM2.5进行相关性分析,建立回归方程并预测2012年PM2.5日均浓度值。结果表明,PM2.5和PM10呈显著相关,回归模型 R2为0.618,标准估计误差为0.023630。PM2.5预测值为60μg/m3,超过国家一级标准限值,且PM2.5污染水平高于PM10,细颗粒物是城市大气污染控制的重要污染物。  相似文献   

12.
为探索PM2.5的分布规律及其影响因素,对2013年西安市13个监测站点的全年ρ(PM2.5)数据进行了统计与整理.分析了ρ(PM2.5)的时空分布,采用聚类分析、小波变换研究了ρ(PM2.5)的区域分布特征与年际变化及突变特征,并对相关因素进行了探讨.结果表明,西安市ρ(PM2.5)在时间分布上具有冬高夏低的特点,而在空间分布上则以市人民体育场和草滩监测点所在区域为ρ(PM2.5)高值中心;ρ(PM2.5)在空间上可分为3大类,纺织城监测点单独为1类,经开区与草滩监测点为2类,另外10个监测点为3类,聚类效果的相关系数为0.7994,显示聚类效果较好;在ρ(PM2.5)年际变化中,除了6月和7月以外,其他月份ρ(PM2.5)均值为147.29 μg/m3,日照时间短和静风是导致ρ(PM2.5)发生突变的主要气象因素.  相似文献   

13.
对吉林省重点城市2015年~2018年大气日均值PM2.5/PM10数据进行处理,从空气中细颗粒物的比例角度评价吉林省的空气污染情况。经过分析得出结论即吉林省2015年~2018年空气质量明显好转,特别是2018年。中度及以上污染天气污染程度下降显著。月份中10、11、12月份污染下降明显。城市中松原市污染较轻。  相似文献   

14.
在大量文献调研的基础上,对正常天气下中国43个城市PM_(2.5)和26个城市PM_(10)中As、Cd、Cr、Cu、Ni、Pb和Zn的数据进行了归纳和分析,探讨中国城市PM_(2.5)和PM_(10)中重金属的总体分布及区域分布特征,并对今后的研究提出了建议。结果表明:1)我国对空气颗粒物中重金属的研究主要集中在PM_(2.5)和PM_(10)两种粒级;PM_(10)中各元素质量浓度均大于PM_(2.5)中元素质量浓度,但两者之间差异不显著;2)不同粒级颗粒物中重金属质量浓度区域分布不同,总体上PM_(2.5)中重金属质量浓度在我国华南、西北地区较高,西南地区最低,而PM_(10)中重金属质量浓度在华北、西北地区较高,西南地区较低;3)总体上,PM_(2.5)中重金属质量浓度表现为省会城市高于地级城市,而PM_(10)中重金属质量浓度表现为地级城市高于省会城市。今后可从不同粒级颗粒物中重金属含量分布特征及不同来源颗粒物粒径特征等方面开展更多的研究,为治理城市空气污染提供科学依据。  相似文献   

15.
为了对流化床炉燃烧产生细颗粒物的排放加以控制,本实验采用烟煤,在马弗炉静态燃烧条件下,改变燃烧时间、燃烧温度、煤颗粒的尺寸,对收集到的煤灰进行粒度分析,得出不同燃烧工况对细颗粒物生成的影响。实验结果显示:随着燃烧时间越长,在煤完全燃尽之前,产生细颗粒物粒度呈二次多项式分布,先逐渐减小,达到最小值后,又缓慢增大;采用较高的温度,有助于降低可吸入颗粒物的产生;不同粒径原煤对产生PM10粒度影响较大。  相似文献   

16.
为了解乌鲁木齐市采暖期和非采暖期大气颗粒物(PM_(2.5)和PM_(10))水溶性离子污染特征,于2015年在乌鲁木齐市采集两个时期大气颗粒物样品,采用离子色谱仪(IC)等仪器对PM_(2.5)和PM_(10)中的9种水溶性离子进行了定量分析。结果表明,乌鲁木齐市采暖期PM_(2.5)与PM_(10)中水溶性离子平均质量浓度分别为(76.26±36.15)μg/m3和(88.94±41.43)μg/m3,约为非采暖期的2倍,主要水溶性离子是SO2-4、NH_4~+、NO-3和Cl-,这4种水溶性离子分别占PM_(2.5)和PM_(10)中总水溶性离子的88.91%和90.03%;非采暖期PM_(2.5)与PM_(10)中水溶性离子平均质量浓度分别为(37.62±14.03)μg/m3和(44.12±16.79)μg/m3,主要水溶性离子是SO2-4、NH_4~+、NO-3和Ca2+,这4种水溶性离子分别占PM_(2.5)和PM_(10)中总水溶性离子的88.18%和86.96%。采暖期PM_(2.5)和PM_(10)中NH_4~+、SO2-4、NO-3三者之间有强相关性,它们可能具有相似的来源;而非采暖期NH_4~+和SO2-4、Cl-的相关性最强,非采暖期NH_4~+在PM_(2.5)和PM_(10)中主要以(NH_4)2SO4和NH_4Cl形式存在。采暖期和非采暖期乌鲁木齐市[NO-3]/[SO2-4]均小于1,推测乌鲁木齐市颗粒物污染可能主要来源于固定排放源。  相似文献   

17.
应用等离子体耦合催化剂进行烟气同时脱硫脱硝实验,重点分析了甲醇对脱硫脱硝效率的影响,同时研究了反应温度、甲醇浓度等因素的影响。实验结果表明,在V2O5/TiO2催化剂耦合等离子体反应器中,200℃时添加0.4%的甲醇能将NO的氧化效率从38%提高到99%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号