首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Unfiltered and filtered (0.45 and 0.2 microm) water samples and sediment samples (sieved to <180 microm and 180-1000 microm) were collected along an approximately 15 km transect of the River Fal, Cornwall, UK, to examine the impact of the disused South Terras uranium mine on the uranium concentrations of the river water and underlying sediments. The uranium concentration of the water samples fluctuated along the river, with the 0.45 microm filtered water showing the largest, seven-fold, difference between minimum (0.19 microg L(-1)) and maximum (1.34 microg L(-1)) concentrations. The historical uranium mine and spoil heaps were not a significant source of uranium to the river water, as water concentrations were low next to the site, but a highly elevated uranium concentration (1000 mg kg(-1)) was found in sediment below an outflow pipe from this mine. Operationally defined "colloidal" (0.2-0.45 microm) and "dissolved" (<0.2 microm) uranium were the predominant forms of the element in the river water (35 and 45% respectively). The uranium concentration in the dissolved phase showed a correlation coefficient of 0.83 (n= 9) with the total cation concentration, suggesting that the uranium concentration in this fraction is directly linked to weathering of rocks and minerals. The observation that weathering is the dominant mechanism delivering uranium to the river water explains the low uranium concentrations in the river water close to South Terras mine, despite the proximity of the spoil heaps, and the maximum uranium concentrations close to a china clay mining area.  相似文献   

2.
The occurrence of As was studied in groundwater used for human consumption and irrigation, in stream water and sediments and in water from thermal springs in the drainage basin of Kalloni Gulf, island of Lesvos, Greece, in order to investigate the potential influence of the geothermal field of Polichnitos-Lisvori on the ground and surface water systems of the area. Total dissolved As varied in the range <0.7-88.3 microg L(-1) in groundwater, 41.1-90.7 microg L(-1) in thermal spring water and 0.4-13.2 microg L(-1) in stream water, whereas As concentrations in stream sediments varied between 2.0-21.9 mg kg(-1). Four out of 31 groundwater samples exceeded the EC standard of 10 microg L(-1). The survey revealed an enrichment in both surface and groundwater hydrological systems in the northern part of the area (average concentrations of As in groundwater, stream water and stream sediment: 8.0 microg L(-1), 8.8 microg L(-1) and 15.0 mg kg(-1) respectively), in association with the volcanic bedrocks, while lower As concentrations were found in the eastern part (average concentrations in groundwater, stream water and stream sediment: 2.9 microg L(-1), 1.7 microg L(-1) and 5.9 mg kg(-1) respectively), which is dominated by ophiolitic ultramafic formations. The variation of As levels between the different parts of the study area suggests that local geology exerts a determinant influence on As geochemical behaviour. On the other hand, the geothermal activity manifested in the area of Polichnitos-Lisvori does not affect the presence of As in groundwater and streams.  相似文献   

3.
A new method has been developed for the determination of gold based on separation and preconcentration using silica gel modified with benzoylthiourea. The optimum experimental parameters for preconcentration of gold, such as acid concentration, sample flow rate, eluent and matrix ions, have been investigated. Gold could be quantitatively retained in the 0.25-2.0 mol L(-1) HCl and HNO(3) concentrations, and then eluted completely with 0.5 mol L(-1) thiourea in 1.0 mol L(-1) HCl. The sorption capacity of gold(III) is 0.92 +/- 0.04 mmol g(-1) with a high enrichment factor of 267. The relative standard deviation of the method, RSD%, was found as 1.2% for 0.1 microg mL(-1). The detection limit for gold was 1.4 microg L(-1). The validation of the proposed method was checked by the analysis of certified reference soil materials. The presented procedure was applied to the determination of gold in some environmental samples.  相似文献   

4.
Mining activity in the North of Potosi (Siglo XX mine, Ingenio Catavi-Siglo XX, Pucro mine and Colquechaca mine) produces minewater containing high concentrations of heavy metals such as As (0.02-34 mg/l), Cd (45-11,600 microg/l), Cu (0.35-32 mg/l), Fe (42-1,010 mg/l), Pb(33-3,130 microg/l), Ni(20-4,320 microg/l), and Zn (1.1-485 mg/l), that exceed considerably the limit values. The rivers in the North of Potosi (Katiri and Pongoma) that do not receive minewater contain clear water with rather low heavy metal concentrations. These rivers and also other rivers contaminated with minewater, are tributaries of the Chayanta River that transports water with a high concentration of heavy metals such as As (6-24 microg/l), Cd (260-2,620 microg/l), Cu (205-812 microg/l), Pb(10-21 microg/l) and Ni(110-332 microg/l). These elements result from mining activity, as indicated by a comparison with rivers not contaminated by minewater discharges. Water of the Chayanta River, used all year long by the population of Quila Quila, (a village situated at about 75 km from the mining centers), for the irrigation of crops such as potato, maize and broad bean, contains heavy metal concentrations exceeding for several elements the guidelines for irrigation. As drinking water the population of Quila Quila consumes spring water with a generally acceptable heavy metal concentration, as well as infiltrated water of Chayanta River (which is also used in animal drinking troughs) with a high concentration of Cd (23-63 microg/l), exceeding the limit value for drinking water. The metal concentration is significantly lower in the infiltrated water than in the water of Chayanta River. Some technological solutions are suggested to improve the quality of the water used. Surveys carried out on inhabitants of the region, showed that many people present health problems, probably to be attributed to the bad quality of the water they consume and use for irrigation.  相似文献   

5.
Water quality throughout south Florida has been a major concern for many years. Nutrient enrichment in the Indian River Lagoon (IRL) is a major surface water issue and is suggested as a possible cause of symptoms of ecological degradation. In 2005-06, water samples were collected weekly from seven sites along Ten Mile Creek (TMC), which drains into the Indian River Lagoon, to investigate and analyze spatial and temporal fluctuations of nutrients nitrogen (N) and phosphorus (P). The objective of this study was to understand the relationships among chlorophyll a concentration, nutrient enrichment and hydrological parameters in the surface water body.High median concentrations of total P (TP, 0.272 mg L(-1)), PO4-P (0.122 mg L(-1)), and dissolved total P (DTP, 0.179 mg L(-1)); and total N (TN, 0.988 mg L(-1)), NO3(-)-N (0.104 mg L(-1)), NH4+-N (0.103 mg L(-1)), and total Kjeldahl N (TKN, 0.829 mg L(-1)), were measured in TMC. The concentrations of TP, PO4-P, DTP, TN, NO3(-)-N, NH4+-N, and TKN were higher in summer and fall than in winter and spring. However, chlorophyll a and pheophytin concentrations during this period in TMC varied in the range of 0.000-60.7 and 0.000-17.4 microg L(-1), with their median values of 3.54 and 3.02 microg L(-1), respectively. The greatest mean chlorophyll a (10.3 microg L(-1)) and pheophytin (5.71 microg L(-1)) concentrations occurred in spring, while the lowest chlorophyll a (1.49 microg L(-1)) and pheophytin (1.97 mug L(-1)) in fall. High concentrations of PO4-P (>0.16 mg L(-1)), DTP (>0.24 mg L(-1)), NO3(-)-N (>0.15 mg L(-1)), NH4+-N (>0.12 mg L(-1)), and TKN (>0.96 mg L(-1)), occurred in the upstream of TMC, while high concentrations of chlorophyll a (>6.8 mug L(-l)) and pheophytin (>3.9 microg L(-l)) were detected in the downstream of TMC. The highest chlorophyll a (11.8 mug L(-l)) and pheophytin (6.06 microg L(-l)) concentrations, however, were associated with static and open water conditions. Hydrological parameters (total dissolved solid, electrical conductivity, salinity, pH, and water temperature) were positively correlated with chlorophyll a and pheophytin concentrations (P < 0.01) and these factors overshadowed the relationships between N and P concentrations and chlorophyll a under field conditions. Principal component analysis and the ratios of DIN/DP and TN/TP in the water suggest that N is the limiting nutrient factor for phytoplankton growth in the TMC and elevated N relative to P is beneficial to the growth of phytoplankton, which is supported by laboratory culture experiments under controlled conditions.  相似文献   

6.
Foliar analysis is a valuable tool for evaluating the pollution status of forests. However, the use of foliar diagnosis in large-scale surveys is a complicated process owing to the high variability within the crown. The method used to express foliar concentrations has often been found to diminish the variability. The effect of the method used to express element concentrations on the spatial variability of cadmium (Cd) in the leaves of crack willow (Salix fragilis L.) was investigated by sampling the leaves of one willow at 292 locations in the crown, each sampling location having a volume of 0.027 m3 (0.3 m x 0.3 m x 0.3 m). Cadmium showed a distinct spatial trend in the crown of the tree. Concentrations as low as 2.4 mg kg(-1) dry weight (DW) or 23.1 mg kg(-1) dry ash weight (DAW) were obtained in the top of the crown, and 10.6 mg kg(-1) DW or 73.0 mg kg(-1) DAW in the bottom of the crown. The lower relative standard deviation and weaker correlation with the sampling height support the use of DAW in large-scale surveys especially. The lower variability of the DAW Cd concentration makes this variable less sensitive to fluctuations caused by differences in growing conditions and sampling methodology. However, the majority of publications in this field report metal concentrations on a DW basis. Therefore, the restrictions set on the use of results expressed on a DAW basis in large-scale surveys of foliar metal concentrations have to be offset against the advantages offered by a reduction of the variability in metal concentrations.  相似文献   

7.
8.
The UK is legally required by the EU Water Framework Directive (WFD) to improve the environmental quality of inland and coastal waters in the coming years. Historic metal mine sites are recognised as an important source of some of the elements on the WFD priority chemicals list. Despite their contamination potential, such sites are valued for their heritage and for other cultural and scientific reasons. Remediating historic mining areas to control the contamination of stream waters, whilst also preserving the integrity of the mine site, is a challenge but might be achieved by novel forms of remediation. In this study, we have carried out environmental monitoring at a historic, and culturally-sensitive, lead-silver mine site in southwest England and have undertaken a pilot experiment to investigate the potential for a novel, non-invasive remediation method at the site. Concentrations of Pb and Zn in mine spoil were clearly elevated with geometric mean concentrations of 6,888 and 710 microg g(-1), respectively. Mean concentrations of Pb in stream waters were between 21 and 54 microg l(-1), in exceedance of the WFD environmental quality standard (EQS) of 7.2 microg l(-1) (annual average). Mean Zn concentrations in water were between 30 and 97 microg l(-1), compared to the UK EQS of 66.5 microg l(-1) (average). Stream sediments within, and downstream from, the mining site were similarly elevated, indicating transport of mine waste particles into and within the stream. We undertook a simple trial to investigate the potential of hydroxyapatite, in the form of bonemeal, to passively remove the Pb and Zn, from the stream waters. After percolating through bonemeal in a leaching column, 96-99% of the dissolved Pb and Zn in stream water samples was removed.  相似文献   

9.
The objective of the present study was to evince the long-term changes after natural revegetation and experimental revegetation of the coal mine spoils with respect to total plant biomass, available plant nutrients, nitrogen transformation and microbial biomass N (MBN) in dry tropical environment of India. Total plant biomass (above- and below-ground), plant available nitrogen, soil nitrogen mineralization and microbial biomass N (MBN) were studied for 2 years in 5 and 10 years old naturally vegetated and revegetated coal mine spoils, and dry tropical forest ecosystem of India. In forest ecosystem, the above ground biomass values ranged from 3,520 to 3,630 kg ha(-1) and belowground from 6,280 to 6,560 kg ha(-1). Plant available nitrogen ranged from 16.76 to 23.21 microg g(-1), net N-mineralization from 9.8 to 48.53 microg g(-1) month(-1) and MBN from 26.4 to 80.02 microg g(-1). In naturally revegetated mine spoil, the above ground biomass values ranged from 1,036 to 1,380 kg ha(-1) and belowground from 2,538 to 3,380 kg ha(-1). Plant available nitrogen ranged from 7.33-17.14 microg g(-1), net N-mineralization from 3.1 to 12.46 microg g(-1) month(-1) and MBN from 14.2 to 35.44 microg g(-1). In revegetated mine spoil, the above ground biomass values ranged from 1,224 to 1,678 kg ha(-1) and belowground from 2,870 to 4,130 kg ha(-1). Plant available nitrogen ranged from 9.4 to 18.83 microg g(-1), net N-mineralization from 4.2 to 16.2 microg g(-1) month(-1) and MBN from 21.6 to 42.6 microg g(-1). The mean plant biomass values in 5 and 10 years mine spoils was lower compared to forest ecosystem by 2.5 and 2 times, respectively. N-mineralization value in 5 year mine spoil was 3.5 times lower and in 10 years mine spoil 2 times lower compared to forest ecosystem. The MBN value was about 2 times lower in both 5 and 10 year mine spoils compared to native forest. MBN was positively related to the re-vegetation age of the mine spoil.  相似文献   

10.
In 1989, the tailings pond dam at the site of a former copper mine near Little Bay, Newfoundland and Labrador, Canada, ruptured and tailings spilled into Little Bay Arm. At the time, no action was taken to arrest the flow of tailings or to mitigate the effects of the spill. To date, no action has been taken to repair the dam and tailings continue to flow into Little Bay Arm. As a result, the marine environment around Little Bay Arm has become contaminated with heavy metals from the tailings. However, the tailings are not the only source of heavy metals to the ecosystem. An old slag heap and what is presumably concentrated copper ore spilled during the loading of ore freighters, are also contributing to the ecosystem's metal load. Marine sediment throughout the Arm contained elevated concentrations of Cu, Ni, Zn, As, V, Co, and Mn. Beach material also contained elevated concentrations of metals with material near the slag heap being the most contaminated. At this site, Cu concentrations were in excess of 5000 mg kg(-1) dry weight, Zn greater than 3000 mg kg(-1) and Co concentrations exceeded 700 mg kg(-1). The highest concentrations of metals in biota were found near the slag heap, near the tailings dam breach, and at the site of the former concentrate loading dock. Despite elevated metal concentrations, the tailings and nearby sediment were not devoid of life. Bivalves and seaweed were abundant in the area and there were no obvious signs of tissue damage or disease in soft shell clams (Mya arenaria) living in the tailings. These clams may be suffering from chronic exposure to the tailings, however, evidence of lipid peroxidation in the clams was inconclusive.  相似文献   

11.
Speciation determines toxicity, transport pathways and residence time of a metal in different compartments of the environment. This study investigated the speciation of mercury in soils, derived from sites known for dumping of mine wastes in the Bibiani–Anwiaso–Bekwai district, a gold mining community of the Western Region of Ghana. Soil samples were taken from the surface; depths of 20, 40 and 60?cm from mine waste at both abandoned and active mine sites. Each sample was analysed for total mercury, organic mercury and elemental mercury. After sample treatment, digestion and reduction with stannous chloride (SnCl2), total mercury content was determined using the Inductively Coupled Plasma—Optical Emissions Spectrometer (ICP–OES). Organic mercury content was determined employing a differential technique after disposing of elemental mercury by heating. Total mercury content in samples ranged from 0.067 to 0.876?mg/kg for surface soils. The same soil of depths 20, 40 and 60?cm had total mercury from 0.102 to 1.066, 0.037 to 4.037 and 0.191 to 4.998?mg/kg, respectively. For organic mercury, concentrations range from 0.012 to 0.260?mg/kg for surface soil. Soil depths of 20, 40 and 60?cm had organic mercury concentrations from 0.016 to 0.653, 0.041 to 1.093 and 0.101 to 2.546?mg/kg respectively. Elemental mercury concentrations in surface soils, soils at depths of 20, 40 and 60 cm ranged from 0.043 to 0.780; 0.017 to 0.749; 0.014 to 2.944 and 0.009 to 2.452 mg/kg respectively. Among the sites studied, only galamsey tailings (GM) showed a trend of increasing total mercury level with increasing depth. For the other sites, trends were not defined. There has been no defined trend for elemental mercury with depth at any of the sampling sites. Just as with total mercury, it was only GM that showed an increasing trend of organic mercury concentration with depth.  相似文献   

12.
This paper presents preliminary data on polybrominated diphenyl ethers (PBDEs) in the Scottish aquatic environment. Sediment and biota (fish liver, fish muscle and mussels) from a number of locations around Scotland were analysed for PBDEs with samples being from both remote and from potentially contaminated areas such as the former sewage sludge dump site at Garroch Head in the Clyde. PBDEs were measured in both cultivated, rope grown mussels and wild mussels collected from 5 sites around Scotland in 2006. Total PBDE concentrations (sum of tri- to hepta-BDEs) ranged from 相似文献   

13.
Direct mercury analysis was successfully applied to determine trace levels of total mercury in samples from sand boxes in Montréal (Québec, Canada). Twenty sand boxes were sampled from across the city and divided into two size fractions, a fine fraction (<100 microm) and a whole fraction. The concentrations of mercury ranged from 1.6 to 35 microg Hg kg(-1) dry soil for the fine fraction and from 0.7 to 6 microg Hg kg(-1) dry soil for the whole fraction. The mercury concentrations correlated with the soil organic carbon content (R2= 0.67) in the sand. The ratio of the concentration of mercury in the fine over the whole fraction varied from 2.2 to 18. Using published soil ingestion rates for children, the calculated daily intake values varied from 0 to 0.5 ng Hg kg(-1) bw d(-1) with an estimated oral ingestion of 200 mg of sand and from 0.2 to 4.7 ng Hg kg(-1) bw d(-1) with an ingestion of 1750 mg of sand. None of the sand boxes contain sufficient amounts of mercury so as to exceed the currently accepted daily intake threshold of 0.105 microg Hg kg(-1) bw d(-1) established by Health Canada.  相似文献   

14.
Methylated species of antimony, arsenic and tin were examined in urban soils of the Ruhr basin, near the cities of Duisburg and Essen, Germany. The main aim of this study was to investigate the occurrence of mono-, di- and trimethylated species of these elements in urban soils. The influence of historical and present land use upon the species content was examined. The distribution of inorganic As, Sb and Sn and their methylated species along the profile depth was investigated. As, Sb and Sn speciation was performed by pH-gradient hydride generation purge and trap gas chromatography, followed by inductively-coupled plasma mass spectrometry (HG-PT-GC/ICP-MS). Species' structures were confirmed by GC-EI/MS-ICP-MS. Monomethylated Sb and As were the dominant species detected: the concentration of these metal(loid) species varied between <0.07-56 microg kg(-1) per dry mass. All dimethylated species and monomethyltin concentrations were between <0.01-7.6 microg kg(-1) per dry mass, and for the trimethylated species of all examined elements, concentrations between <0.001-0.63 microg kg(-1) per dry mass were detected. The highest organometal(loid) concentrations were observed in agricultural soils and garden soils; lower concentrations were found in the soils of abandoned industrial sites (wasteland, primary forest and grassland) and a flood plain soil of the Rhine. This result can be ascribed to both the cultivation and the increased biological activity of the agricultural soils, and the generally higher contamination, the disturbed structure and the artificial substrates (deposits from industrial sources) of the abandoned industrial soils. Due to periodical sedimentation, the flood plain profile was the only one where no depth dependence of organometal(loid) species concentration was detected. The other soil profiles showed a decrease of species content with increasing depth; this was particularly noticeable in soils with a clear change from a horizon with an organic character towards a mineral horizon, i.e. decreasing vitality from profile top to bottom. It is not as yet clear whether the organometal(loid) species are formed in the mineral horizons of the profiles or whether they are displaced from the organic, biologically-active horizons towards the mineral horizons. Field studies revealed that soil parameters like pH, water content or temperature did not correlate significantly with the degree of biomethylation observed. In contrast to the lower in vitro biomethylation efficiency of Sb vs. As in microbial incubations, we consistently detected higher proportions of transformed Sb compounds in situ in soil samples. These data may indicate a need to re-examine the currently accepted model of Sb biogeochemical cycling in the real environment.  相似文献   

15.
Compost and digestate are important recycling fertilizers and have beneficial effects on soil parameters. However, they can contain significant amounts of organic pollutants. Here, the first comprehensive data set on dibenzo-p-dioxins and -furans (PCDD/F), dioxin-like polychlorinated biphenyls (DL-PCB), brominated flame retardants, perfluorinated alkyl substances (PFAS), pesticides, phthalates, nonylphenol and chlorinated paraffins (CP) in source-separated compost and digestate from Switzerland is presented (n = 3-18). The median summation 17PCDD/F and summation 12DL-PCB concentrations were at 3.2 ng I-TEQ kg(-1)dry weight (dw) and 3.0 ng WHO-TEQ kg(-1)dw, respectively. Brominated diphenyl ether 209 (BDE 209) accounted for 72% of the total polyBDE content (10 microg kg(-1)dw). Hexabromocyclododecane (HBCD) and tetrabromobisphenol A (TBBPA) levels were at 100 and 0.51 microg kg(-1)dw, respectively. PFAS were identified for the first time in compost and digestate (median concentration 6.3 microg kg(-1)dw, summation 21compounds). Out of 269 pesticides analysed, 30 fungicides, 14 herbicides, eight insecticides and one acaricide were detected. Di-(2-ethylhexyl)phthalate (DEHP) median concentration accounted for 280 microg kg(-1)dw and nonylphenol was below the detection limit of 1 mg kg(-1)dw. The sum of short and medium chain CP was between 90 and 390 microg kg(-1)dw. The concentrations observed were at or above the levels found in background soils, which are the main recipient of compost and digestate. Where actually applied, compost can contribute considerably to the total input of organic pollutants to the soil. However, on a total Swiss agricultural area base, inputs seem to be limited.  相似文献   

16.
Road sediments from the region of Bordeaux (France) were analysed for trace metals, hydrocarbons (including Polycyclic Aromatic Hydrocarbons, PAHs) and phosphorus. The aim of the study was to assess their potential risk for the environment. The sediments were collected by means of a sweeper. The particles are mostly sandy clay loam and silty clay loam with 5.6-8.3% CaO. Heavy metal concentrations are generally below the French and Dutch standards for polluted soils, but a few samples have higher concentrations, e.g., 547 mg kg(-1) for Zn, and 222 mg kg(-1) for Pb. PAH concentrations are above the Dutch target value for polluted soils, and could be a threat to the environment: pyrene (2600 microg kg(-1)) and fluoranthene (1400 microg kg(-1)) have the highest concentrations, whereas chrysene (340 microg kg(-1)) has the lowest. Consequently, these sediments must be considered as waste according to the French circular no 2001-39 from 18 June 2001 and cannot be disposed of anywhere. The Standards Measurements and Testing (SMT) protocol for sequential extraction of phosphorus in sediments was used to determine the forms of phosphorus in the samples. Total phosphorus concentration is 620 mg kg(-1) on average, with a maximum of 933 mg kg(-1); organic phosphorus content is low (36 mg kg(-1) on average). The protocol could be slightly amended, especially with regards to organic phosphorus at low concentrations and could then be used for the determination of phosphorus in other materials such as sludge from detention ponds.  相似文献   

17.
Natural radioactivity concentrations due to the coal mining in Gabal El-Maghara, North Sinai, Egypt, were determined using gamma-ray spectroscopy. Coal, water and soil samples were investigated in this study. The (226)Ra, (232)Th and (40)K activity concentrations in coal before extraction were 18.5 +/- 0.5, 29.5 +/- 1.2 and 149.0 +/- 8.4 Bq kg(-1), respectively. These concentrations were reduced to 18-22% after extraction due to the clay removal of the coal ore. The activity contents of the water and soil samples collected from the surrounding area did not show any evidence of enhancement due to the mining activities. Absorbed dose rate and effective dose equivalent in the mine environment were 29.4 nGy h(-1) and 128.0 microSv a(-1), respectively. The measured activity concentrations in the mine environment and the surrounding areas (5 km away from the mine) are similar to that found in other regions in North and South Sinai. Based on the measurements of gamma-ray emitting radionuclides, the mine activity does not lead to any enhancement in the local area nor represents any human risk.  相似文献   

18.
This study investigated dispersion and bioaccumulation of mining-related elements from an open-pit olivine mine at Seqi in Southwest Greenland (64°?N) using lichens (Flavocetraria nivalis), seaweeds (Fucus vesiculosus), mussels (Mytilus edulis) and fish (Myoxocephalus scorpius). The mine operated between 2005 and 2009, and samples were taken every year within a monitoring area 0–17 km from the mine during the period 2004–2011. A total of 46 elements were analysed in the samples. After mining began, highly elevated metal concentrations, especially nickel (Ni), chromium (Cr), iron (Fe) and cobalt (Co), were observed in lichens relative to pre-mining levels (up to a factor of 130) caused by dust dispersion from the mining activity. Elevated metal concentrations could be measured in lichens in distances up to ~5 km from the mine/ore treatment facility. Moderately elevated concentrations of Ni and Cr (up to a factor of 7) were also observed in seaweeds and mussels but only in close vicinity (<1 km) to the mine. Analyses of fish showed no significant changes in element composition. After mine closure, the elevated metal concentrations in lichens, seaweeds and mussels decreased markedly, and in 2011, significantly elevated metal concentrations could only be measured in lichens and only within a distance of 1 km from the mine.  相似文献   

19.
Extensive waste deposits (tailings) and ash from the ignition oven of the abandoned gold mine of mining district El Triunfo (MD-ET) in Baja California Sur, Mexico have released trace elements into the sediments of the Hondo-Las Gallinas-El Carrizal arroyo, which connects to the Pacific Ocean through an evaporitic basin. Migration of these elements through the arroyo is mainly caused by winds or tropical hurricanes that occur sporadically during the summer and cause the otherwise dry arroyo to overflow. To evaluate the concentration and distribution of the elements As, Hg, Pb, and Zn along the 48 km arroyo, surface sediments were collected from 26 sites, ranging from close to the MD-ET to the mouth of the arroyo at the Pacific Ocean. Concentrations in tailings and ash were for As 8890 and 505?000 mg kg(-1); for Hg 0.336 and 54.9 mg kg(-1); for Pb 92,700 and 19,300 mg kg(-1); and for Zn 49,600 and 1380 mg kg(-1). The average of the Normalized Enrichment Factor (Av-NEF) in surface sediments, calculated using background levels, indicates that the sediments are severely contaminated with As and Zn (Av-NEF = 22), Pb (Av-NEF = 24) and with a moderate contamination of Hg (Av-NEF = 7.5). The anthropogenic influence of those elements is reflected in the arroyo sediments as far as 18 km away from the MD-ET, whereas the samples closest to the discharge into the Pacific Ocean show a natural to moderate enrichment for As and Zn and low or no enrichment for Hg and Pb. A principal components analysis identified four principal components that explained 90% of the total variance. Factor 1 was characterized by a high positive contribution of the anthropogenic source elements, especially As, Pb, and Zn (37%), whereas Factor 2 was strongly correlated with the oxy-hydroxides of Fe and Mn (27%). Factor 3 was correlated with Li (16%) and Factor 4 with Al (10%), which indicates more than one source of lithogenic composition, though they played a minor role in the distribution of the elements.  相似文献   

20.
Mercury emissions from some upstream gold mining areas and recent findings of high natural Hg levels in sediments motivated studies on the Hg cycle in the Minas Gerais state. The study presents the total mercury amount found in Geophagus brasiliensis' muscular tissue (wet weight) and sediments from Piracicaba River. Mercury was analyzed using acid digestion followed by determination of total mercury by cold vapour atomic absorption spectrophotometry. This study was also complemented with the analysis of the limnological parameters (water temperature, conductivity, total dissolved solids, suspended particles, pH, dissolved oxygen, maximum depth, photic index and total carbon). The mercury concentration in sediments samples was higher than the mercury concentration in muscular tissue of fish. The lowest Hg level measured in fish was 0.0147 microg g( - 1), while the highest was 0.101 microg g( - 1). In the sediment samples, the lowest and highest levels were 0.02 microg g( - 1) and 0.16 microg g( - 1), respectively. The Hg concentrations in fish and sediment were both under the maximum limit permitted by the World Health Organization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号