首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
中国各区域秸秆资源可能源化利用的潜力分析   总被引:15,自引:0,他引:15  
在我国能源需求迅速增长并日益依赖国际市场的背景下,能源化利用秸秆资源是我国缓解能源短缺的重要选择之一。论文在综合相关研究成果的基础上,对我国不同区域农作物秸秆可能源化利用的潜力及资源密度进行了分析。研究表明,2009年中国农作物秸秆理论资源量为7.48×108 t,可获得资源量为6.34×108 t,可能源化利用量为1.52×108 t。中国可能源化利用秸秆资源区域分布极不均匀。长江中下游、东北、华北等区域可能源化利用秸秆潜力较大,分别为0.42×108、 0.37×108和0.35×108 t,青藏高原、黄土高原和西南可能源化利用秸秆资源潜力较低。根据各区域可能源化利用秸秆资源密度,论文对不同省份建造较大规模秸秆发电企业或燃料乙醇企业的适宜性进行了分析。  相似文献   

2.
以黑龙江省为例,采用排放因子法计算了2016年秸秆露天焚烧污染物排放清单,分析了污染物的时空分布特征.结果表明,黑龙江省秸秆露天焚烧各污染物排放量为:CO2 1314.09万t、CO 41.92万t、CH4 3.77万t、NMVOCs 8.35万t、NH3 0.65万t、BC 0.44万t、OC 3.13万t、SO2 0.50万t、NOX 3.28万t、PM10 8.81万t、PM2.5 10.14万t.在95%的置信区间确定了排放清单的不确定性,不确定性范围为NOX的±86%的低值到CO的±187%的高值.通过可靠性分析推断,本文的排放清单是合理的.玉米和水稻秸秆露天焚烧对同种大气污染物的贡献高于其他作物秸秆.大气污染物排放高值区位于黑龙江省西部和东部,污染物排放的时段在全年范围内具有明显的双峰特征.秸秆露天焚烧率的下降能有效促进大气污染物的减排,且农垦地区集约化和规模化的管理模式能有效控制秸秆露天焚烧.  相似文献   

3.
为了解中国农作物秸秆资源量近40年的变化趋势及当前的空间分布特征和主要利用方式,估算秸秆利用碳减排潜力,采用草谷比法对1981~2020年间全国农作物秸秆资源量进行了科学估算,分析了秸秆资源密度和人均资源量的时空分布特征,并估算了秸秆制备生物炭基肥的碳减排潜力.结果表明:(1) 1981~2020年我国农作物秸秆总量增长了4.39×108 t,且总体呈不断增长的趋势.(2) 2020年全国作物秸秆理论资源总量约7.72×108 t;水稻、小麦和玉米秸秆仍旧是主要的农作物秸秆种类,约占秸秆资源总量的84%.东北和华北地区秸秆资源量最丰富,东北地区人均资源占有量最高,约1.46 t;华北地区秸秆资源密度最高,达5.42 t·hm-2.(3)我国农作物秸秆综合利用率逐年提高,目前主要以肥料化和饲料化利用方式为主,约占所有秸秆利用方式的77.5%.(4) 2020年我国可收集农作物秸秆资源可制备成生物炭2.04×108 t,制备生物炭过程中可更新能源代替化石燃料可减少二氧化碳当量(CO2e  相似文献   

4.
为明确临沂市畜禽粪便养分资源状况及其肥料化利用潜力,该文基于2010-2020年畜禽养殖和农作物种植数据,估算全市及12区县畜禽粪便及其养分资源量的时空变化,测算主要农作物生长的养分需求量,并分析畜禽粪便替代化肥潜力。结果表明:临沂市畜禽粪便养分资源量呈现不断增长的趋势,2020年达到20.98万t,主要分布在北部和西部的区县。在全部肥料化利用的情况下临沂市畜禽粪便养分有效供给量能满足农作物养分需求量的33.45%,替代同期化肥施用量的48.28%,可使单位播种面积化肥施用强度由315 kg/hm2下降至163 kg/hm2。畜禽粪便与秸秆相结合替代化肥,还田比例30%、50%和70%的情景下,替代潜力分别为31.23%、52.05%和72.87%,资源化利用潜力十分可观。该研究可为临沂市畜禽粪便养分资源合理利用、化肥减施目标制定和种养循环农业发展提供理论参考。  相似文献   

5.
付畅  吴方卫 《自然资源学报》2014,29(8):1430-1440
论文测算了我国能源作物和农林废弃物等原料的燃料乙醇转化潜力,发现2015-2030年我国燃料乙醇的理论生产能力将从6 364×104 t 增长到1.18×108 t,可行的产量水平将在1 387.9×104 t 以上。如果能实现这一产量,将在很大程度上缓解我国的石油供求矛盾。今后提高燃料乙醇生产能力的可行策略主要有以下方面:加强边际土地资源评估和开发,促进能源作物的规模化利用,通过利益引导加强秸秆能源化利用,延长林木采伐加工产业链,在农村地区发展沼气等新型能源替代薪柴。  相似文献   

6.
秸秆还田对双季稻产量及氮磷径流损失的影响   总被引:3,自引:0,他引:3       下载免费PDF全文
为探索减少稻田氮磷流失的有效耕作措施,以南方典型黄壤双季稻田为研究对象,采用田间长期定位观测试验,研究了连续7 a(2008—2014年)秸秆还田(RFS)替代38.7%的N、40.8%的P2O5和42.7%的K2O晚稻化肥投入与常规化肥(RF)处理对双季稻产量、地表径流中ρ(TN)、ρ(NH4+-N)、ρ(NO3--N)、ρ(TP)、ρ(DP)(DP为溶解态总磷)的影响.结果表明:与常规化肥处理相比,秸秆还田处理不仅可从源头上减少晚稻化肥投入,还可降低稻田径流液中氮、磷养分含量,分别使TN和TP流失量减少12.6%、9.7%;氮流失主要以DIN(可溶性无机氮)为主,DIN/TN(DIN输出量在TN输出量中所占比例)为66.2%~70.8%;磷流失主要以DP(可溶性磷酸盐)为主,DP/TP(DP输出量在TP输出量中所占比例)为60.1%~65.9%;秸秆还田处理下早稻较常规化肥处理有增产趋势,增幅为4.5%~10.1%,晚稻有减产风险,但减产差异不显著,平均减幅为6.3%.因此,秸秆长期还田是一种秸秆资源有效利用和节肥增效减失的耕作方式.   相似文献   

7.
为提高青稞秸秆的综合利用率,选用KOH和NH3·H2O作为青稞秸秆固态预处理试剂进行中温批式厌氧发酵产甲烷试验研究,并通过Box-Behnken响应面法来考察不同含量的KOH、NH3·H2O及预处理时间对青稞秸秆累积甲烷产量的交互影响. 结果表明:各因素对青稞秸秆累积甲烷产量的影响程度表现为NH3·H2O含量>KOH含量>预处理时间;通过响应面模型验证试验得到最优预处理条件为KOH含量5.13%、NH3·H2O含量3.35%、预处理时间13.87 h,该条件下累积甲烷产量实测值为282.34 mL/g(以VS计),与预测值(286.4 mL/g)非常接近,相对误差小于5%,证明验证模型有效. KOH和NH3·H2O联合预处理能够显著提高青稞秸秆厌氧发酵产甲烷能力(P<0.05),累积甲烷产量较7% KOH和5% NH3·H2O单一预处理及未处理分别提高了7.59%、20.82%和70.78%;二者联合预处理还能够有效降解木质素(降解率为29.21%),提高发酵液营养价值;同时,可减少回收预处理试剂的成本,降低对环境的污染. 研究显示,Box-Behnken响应面法能较好地优化青稞秸秆厌氧发酵的预处理条件,KOH和NH3·H2O联合预处理是高效生产生物甲烷和环境友好的木质纤维素类废弃物的处理方法.   相似文献   

8.
基于调查的中国秸秆露天焚烧污染物排放清单   总被引:4,自引:0,他引:4       下载免费PDF全文
基于2010年初农村能源消费情况的问卷调查,获得全国分省秸秆露天焚烧比例,在此基础上确定秸秆露天焚烧的活动水平,采用排放因子法建立中国秸秆露天焚烧的污染物排放清单. 结果表明,中国农村秸秆露天焚烧平均比例为20.8%. 2009年全国28个省区(不包括西藏自治区、天津市、上海市、港澳台地区,下同)秸秆露天焚烧的PM2.5、BC、OC、SO2、NOx、CO、NMVOC、NH3、CH4和CO2排放量分别138.1×104、6.4×104、41.1×104、8.7×104、41.8×104、594.6×104、94.4×104、8.0×104、44.2×104和14 355.4×104 t. 稻谷、玉米和小麦是露天焚烧的三大作物秸秆,其对污染物排放的贡献合计约为87%. 秸秆露天焚烧排放量最高的前3位分别为湖南省、河南省和安徽省, 秸秆露天焚烧比例分别43.1%、20.8%和39.7%. 污染排放的高值区主要集中在华北和华中地区. 95%置信区间下的不确定性分析结果显示,PM2.5、BC、OC、SO2、NOx、CO和NMVOC排放的不确定性范围分别为-60%~83%、-78%~147%、-73%~135%、-48%~75%、-49%~78%、-91%~155%和-67%~94%. 2015年初对六省(湖南省、广东省、江苏省、河南省、黑龙江省和辽宁省)农村能源消费调查的结果显示,2014年江苏省、湖南省和广东省的秸秆露天焚烧比例较2009年均有下降,而辽宁省、黑龙江省和河南省则相对上升. 研究显示,秸秆禁烧政策已取得初步成效,建议国家有关部门进一步加大秸秆禁烧政策的推行力度,完善相关政策措施.   相似文献   

9.
中国能源生产与消费趋势预测和碳排放研究   总被引:8,自引:0,他引:8  
为合理、科学地对能源结构进行调整和优化,提出了能源结构的双组份模型。由统计检验估计法,对模型中的能源生产与消费的相关系数进行了预测估计。依据中国统计年鉴2008年数据,对我国2014年能源生产与能源消费的预测结果分别为24.26×108t标准煤及27.15×108t标准煤。利用预测的能源消费总量、结构与碳排放量之间的关系式——即单位能耗碳排放系数的表达式,预测中国2012年的碳排放量为21.87×108t标准煤,且有上升趋势,并提出了相关的能源对策。  相似文献   

10.
在日益严峻的能源短缺和环境污染的双重压力下,进行秸秆能源化的开发和利用对于河南新型城镇化建设具有重大战略意义。河南秸秆资源丰富,但秸秆能源化利用尚处于初级阶段,利用率非常低,只有健全秸秆收储体系,改进各种秸秆能源化利用方式的技术性能,加强应用和推广,提升秸秆能源化利用的经济效益,加大对秸秆能源化利用相关主体的引导和扶持,提供政策和资金支持,才能为河南秸秆能源化发展提供良好的环境。  相似文献   

11.
秸秆是农业生产中一种重要的生物资源,是唯一可再生的能源。秸秆有效利用关系着农田资源再利用和环境保护等重大问题。目前大量的秸秆被焚烧处理,既浪费资源又污染环境。利用微生物加快还田秸秆降解是目前利用秸秆行之有效的方法。本文阐述了微生物在秸秆还田中的应用研究进展,以期为解决合理利用秸秆资源这一现代农业面临的重大难题提供支持。  相似文献   

12.
不同生物炭对磷的吸附特征及其影响因素   总被引:1,自引:1,他引:0  
为了实现植物生物质资源化利用,选择5种生物质材料制备生物炭,通过比较5种生物炭材料的磷吸附能力,筛选出了2种磷吸附效果较佳的材料,并探明了筛选生物炭材料的理化性质及其对磷的吸附特征.结果表明,5种生物炭材料中,仅水稻秸秆和玉米秸秆生物炭对磷具有吸附能力.Langmuir等温吸附曲线表明,水稻秸秆生物炭对废水中磷的吸附能力强于玉米秸秆生物炭,理论最大吸附量为:水稻秸秆生物炭(9.78 mg·g-1)>玉米秸秆生物炭(0.39 mg·g-1).水稻秸秆生物炭的比表面积(148.30 m2·g-1)和总孔体积(0.11 cm3·g-1)远高于玉米秸秆生物炭8.26 m2·g-1和0.03 cm3·g-1,同时水稻秸秆生物炭有更高的Mg、 Ca、 Fe和Al元素含量.水稻秸秆生物炭和玉米秸秆生物炭对磷吸附的最佳pH为酸性;在不同的pH范围内(3.0~11.0),水稻秸秆生...  相似文献   

13.
唐山作为钢铁生产密集型城市,2020年粗钢产量为1.44亿t,全市规模以上工业综合能耗综9974万t标准煤,2018年唐山市工业SO2、NO<i>x排放量近6.9万,15.8万t。在产业可持续转型发展与城市共容的双重挑战下,河钢集团以河北省钢铁产业结构调整为契机,优化自身产业布局,采用高效节能、低碳环保的绿色工厂设计理念建造唐钢新区,尤其在能效提升、全流程超低排放、副产品资源化、水资源化高效利用等方面实施一系列绿色制造技术,为国内钢铁企业应用绿色制造技术提供了借鉴。  相似文献   

14.
中国玉米生产-消费体系养分流动分析   总被引:2,自引:0,他引:2  
采用物质流和养分流相结合的分析方法, 沿玉米生产的肥料投入到玉米消费过程, 研究氮、 磷养分流动; 以2004 年为例, 分析了中国玉米生产消费过程中氮、磷养分流动特点和资源的利用效 率。2004 年玉米生产投入化肥氮(N) 549.6×104t、磷( P2O5) 211.2×104t; 共收获养分氮(N) 342.9×104t、 磷( P2O5) 139.4×104t, 其中75%的氮和68%的磷被利用, 最终进入家庭的氮占22.3%, 磷为15.0%; 秸 秆中氮的还田率只有47%, 磷的较高, 在80%左右, 可见秸秆还田是归还土壤磷的有效措施。玉米 生产要消耗大量的资源, 2004 年生产1t 玉米养分, 消耗的化肥氮、磷养分相当于煤5.2t、磷矿资源 12.1t。因此, 优化玉米整个生产与消费体系中养分的流动, 对于提高养分资源利用效率和减少资源 浪费具有重要作用。  相似文献   

15.
以秸秆替代部分煤进行高炉喷吹,对收集、运输、破碎和喷吹等过程进行了能源消耗和环境影响的差异性比较。考虑到碱负、荷对高炉顺行的影响,秸秆在煤中的混入比最大应在10%左右。秸秆喷吹的能耗较高,与煤相比,原煤消耗量增加了1倍以上,原油消耗量增加了4倍左右。从秸秆的收集到破碎,污染物排放量都比煤高,尤其在破碎过程,各种污染物的排放量是煤的7倍左右。在高炉喷吹利用过程中,秸秆与煤的CO_2、CO和高炉渣的排放量相差不大。由于秸秆生物质的碳循环特点,冶炼1 t铁水可减少CO_2排放量23kg。根据我国排污费标准和国际CO_2排放指标交易市场价,用秸秆替代煤喷吹,生产1t铁水可降低环境成本2.23元。对于一座2 500 m3高炉,每年可减排CO_2 5.63万t,总环境成本可以降低550万元。  相似文献   

16.
据悉,吉林省规模最大的秸秆新能源加工项目26日正式启动,项目总投资2000万元.主要开发玉米秸秆生物质造料机、颗粒燃料等新型能源和设备。据了解,用玉米秸秆粉碎后加工成的颗粒燃料体积小.而发热量与煤接近。每1.5t秸秆可加工1t燃料.配合颗粒燃料专用炉具、锅炉等可做饭、供热,适合机关、企业、学校、餐饮及民用等,价格约400元h。  相似文献   

17.
近日,河南省鹤壁市发改委透露,鹤壁市泰新科技公司1.3万hm^2玉米秸秆综合利用项目和安黎环燕轮胎公司年处理5万t废旧轮胎资源综合利用项目,已被列入2009年国家资源节约和环境保护第二批备选项目。这两个项目均为资源综合利用项目,一旦被确认后可获得国家支持资金1400万元。  相似文献   

18.
为实现废弃水稻秸秆资源化利用及其治理水环境中Cd2+的污染问题,用KMnO4、KOH、H2O2、KOH+H2O2、酒石酸、柠檬酸、TiO2对水稻秸秆进行改性,制成不同的水稻秸秆吸附剂来吸附溶液中的Cd2+,利用扫描电子显微镜(SEM)、X射线衍射(XRD)、傅里叶红外光谱仪、比表面积及孔径分析仪和Zeta电位仪对改性前后的水稻秸秆进行表征分析,吸附过程采用准一级动力学方程、修正一级动力学方程、准二级动力学方程和颗粒内扩散模型进行拟合.结果表明:在Cd2+初始浓度100mg/L,pH7,水稻秸秆添加量为10g/L,25℃条件下,7种改性水稻秸秆吸附Cd2+的效果不同,其中经KMnO4改性的水稻秸秆对Cd2+的吸附效果最好,吸附量达10.024mg/g,对Cd2+的去除率达到99.24%,比未改性水稻秸秆提高了99.44%,其次是KOH和KOH+H2O2改性处理的水稻秸秆,吸附量分别达到了9.302和9.189mg/g,对Cd2+的去除率分别达92.62%和90.82%,比未改性水稻秸秆分别提高了85.07%和82.83%.改性处理水稻秸秆吸附Cd2+的效果顺序为:KMnO4 > KOH > KOH+H2O2 > TiO2 > H2O2 > 柠檬酸 > 酒石酸.对于Cd2+的吸附过程,准一级速率方程只能较好地描述吸附初始阶段,准二级动力学方程则能很好地描述吸附的整个过程.经KMnO4,KOH和KOH+H2O2改性的水稻秸秆是具有潜在利用价值的废水中Cd2+吸附剂.  相似文献   

19.
中国钢铁行业二氧化碳排放达峰路径研究   总被引:2,自引:2,他引:0       下载免费PDF全文
钢铁行业是我国重要的CO2排放源. 作为典型的资源能源密集型产业,钢铁行业加快绿色低碳转型、尽早实现碳达峰并有效降碳,既是行业自身高质量发展的内在需要,也是支撑落实国家碳达峰、碳中和目标的客观要求. 本文综合考虑经济社会发展、资源能源利用、工艺结构调整、低碳技术应用等因素影响,开展了基于情景分析的钢铁行业CO2排放达峰路径研究,对不同情景下钢铁行业CO2的排放趋势进行测算,识别钢铁行业CO2减排的主要驱动因素,判断推动钢铁行业碳排放达峰的关键举措,为制定“双碳”目标背景下钢铁行业CO2排放控制策略提供参考. 测算结果表明,我国钢铁行业CO2总排放量有望在2020—2024年期间达到峰值;行业CO2总排放量峰值为18.1×108~18.5×108 t,达峰后到2030年降幅将超过3×108 t. 研究显示,粗钢产量是决定我国钢铁行业碳排放能否快速达峰的关键,加大废钢资源利用、推进外购电力清洁化以及提高系统能效水平是2030年前钢铁行业实现碳排放达峰并有效降碳的重要途径. 到2030年,粗钢产量降低、加大废钢资源利用、推进外购电力清洁化、提高系统能效水平以及氢能炼钢和二氧化碳捕集、利用与封存(CCUS)等前沿技术对钢铁行业CO2减排的贡献率分别为11%~52%、34%~52%、7%~20%、5%~13%和2%~3%.   相似文献   

20.
基于中国2013~2015年27个省(区、市)平板玻璃企业的逐生产线基础信息、活动水平及污染物控制技术等数据,建立了平板玻璃主要大气污染物SO2、NOx排放量计算方法和排放清单,使用蒙特卡洛法进行了不确定性分析.统计了平板玻璃产量、燃料使用量、燃料结构以及污染物控制技术,分析了排放特征与空间差异.结果表明:中国平板玻璃行业以天然气/煤气为主要燃料,平均单位产品能源消耗量为13.2kg标煤/重量箱,山西、内蒙古等省份较高;37%和42%的生产线分别安装了脱硫、脱硝设施,技术以烟气循环流化床、双碱法、SCR为主;SO2排放量先升后降,2014年达到16.84万t,2015年下降至13.67万t,湖北、浙江、河北、广东排放量较大;NOx排放量持续下降,从2013年的37.47万t下降至2015年的28.38万t,河北、湖北、山东、广东排放量较大;SO2排放强度西南部地区高于其他地区,且有上升趋势,其他地区SO2排放强度整体下降;NOx排放强度中西部地区较高.应加强高能耗、高排放以及高强度地区的污染控制力度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号