首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The anodic degradation of 1,4-benzoquinone (BQ), one of the most toxic xenobiotic, was investigated by electrochemical oxidation at boron-doped diamond anode. The electrolyses have been performed in a single-compartment flow cell in galvanostatic conditions. The influence of applied current (0.5–2 A), BQ concentration (1–2 g dm?3), temperature (20–45 °C) and flow rate (100–300 dm3 h?1) has been studied. BQ decay kinetic, the evolution of its oxidation intermediates and the mineralization of the aqueous solutions were monitored during the electrolysis by high-performance liquid chromatograph (HPLC) and chemical oxygen demand (COD) measurements. The results obtained show that the use of diamond anode leads to total mineralization of BQ in any experimental conditions due to the production of oxidant hydroxyl radicals electrogenerated from water discharge. The decay kinetics of BQ removal follows a pseudo-first-order reaction, and the rate constant increases with rising current density. The COD removal rate was favoured by increasing of applied current, recirculating flow rate and it is almost unaffected by solution temperature.  相似文献   

2.
以自制的二氧化铅粉末多孔电极为阳极,不锈钢为阴极,探讨了投加Cl-对氨氮电化学氧化反应速率、途径及产物等的影响。结果表明,投加Cl-能显著提高氨氮的电化学氧化速率;有氯离子存在的条件下,氨氮的去除主要靠电催化过程中产生的强氧化性物质.OH,HClO的作用,其去除率随着电流密度的增大呈增高的趋势,随初始pH的增大而增大;投加氯离子后,NO3--N的生成量增加,但氧化产物主要是以N2为主的含氮气体。  相似文献   

3.
Atenolol is a β-blocker drug and an identified emerging pollutant. Advanced oxidation processes (AOPs) utilise the reaction of a highly oxidising species (hydroxyl radicals, ?OH) for the mineralisation of emerging pollutants since conventional treatment methodologies generally fail to degrade these compounds. In the present work, degradation of atenolol was carried out using ultrasound with frequencies ranging from 200 kHz to 1 MHz as a source of hydroxyl radical. The degradation was monitored by HPLC, total organic carbon (TOC) and chemical oxygen demand (COD) reduction and ion chromatography (IC). Nearly 90 % of degradation of atenolol was observed with ultrasound having 350 kHz. Both frequency and power of ultrasound affect the efficiency of degradation. Nearly 100 % degradation was obtained at a pH of 4. Presence of various additives such as sodium dodecyl sulphate, chloride, sulphate, nitrate, phosphate and bicarbonate was found to reduce the efficiency of degradation. Although nearly 100 % degradation of atenolol was observed under various experimental conditions, only about 62 % mineralisation (from TOC and COD measurements) was obtained. Nearly eight intermediate products were identified using high-resolution mass spectrometry (LC-Q-TOF). These products were understood as the results of hydroxyl radical addition to atenolol. The degradation studies were also carried out in river water which also showed a similar degradation profile. A mechanism of degradation and mineralisation is presented.  相似文献   

4.
This study describes the degradation of nitrogen-heterocyclic compounds (NHCs) by anodic oxidation and electro-Fenton. Using indole as a model nitrogen-heterocyclic compound, the removal of indole reached 68% and 97% by anodic oxidation and electro-Fenton, respectively, while the decay of TOC was 15% and 38% correspondingly. By the analysis of ultraviolet-visible spectra and liquid chromatography/mass spectrum, the degradation mechanism of indole by electro-Fenton was proposed as hydroxyl oxidation and anodic oxidation. The degradation of other NHCs including quinoline, isoquinoline and pyridine by anodic oxidation and electro-Fenton revealed the same sequence: quinoline approximately equal isoquinoline > indole > pyridine. A significant correlation between ln k (natural logarithm of rate constants) and E(LUMO) (the energy of the lowest unoccupied molecular orbit) was obtained by quantitative structure-activity relationship analysis. Degradation of coking plant wastewater showed the removal of COD and TOC were 42% and 22% respectively after 180 min treatment by electro-Fenton.  相似文献   

5.
The electrochemical abatement of the drug ibuprofen (2-(4-isobutylphenyl)propionic acid) from aqueous solution has been carried out by anodic oxidation. The electrolyses have been performed at constant current using a small, undivided cell equipped with a Pt or thin-film boron-doped diamond (BDD) anode and a carbon-felt cathode. The results have shown that ibuprofen has been destroyed under all the conditions tested, following pseudo-first-order kinetics; however, BDD enables higher removal rates than Pt, because the former produces greater quantity of ?OH. Using BDD anode, the pseudo-first-order rate constant increased with applied current and when NaCl replaced Na2SO4 as supporting electrolyte, while it is almost unaffected by ibuprofen concentration. Mineralization of ibuprofen aqueous solutions was followed by total organic carbon (TOC) measurements. After 8 h of electrolysis, TOC removal varied from 91 % to 96 % applying a current in the range of 50–500 mA. The reaction by-products were quantified by chromatographic techniques, and in particular, aliphatic acids (oxalic, glyoxylic, formic, acetic, and pyruvic) have been the main intermediates formed during the electrolyses. The absolute rate constant for the oxidative degradation of ibuprofen have also been determined, by competition kinetic method, as 6.41?×?109 M?1?s?1.  相似文献   

6.
Awad HS  Galwa NA 《Chemosphere》2005,61(9):1327-1335
Electrocatalytic degradation of Acid Blue and Basic Brown dyes from simulated wastewater on lead dioxide anode was investigated in different conductive electrolytes. It was shown that complete degradation of these dyes is dependent primarily on type and concentration of the conductive electrolyte. The highest electrocatalytic activity was achieved in the presence of NaCl (2g/l) and could be attributed to indirect oxidation of the investigated dyes by the electrogenerated hypochlorite ions formed from the chloride oxidation. In addition, contribution from direct oxidation could also be possible via reaction of these organic compounds with the electrogenerated hydroxyl radicals adsorbed on the lead dioxide surface. In the presence of NaOH, the electrocatalytic activity of the employed anode was not comparable to that in NaCl due primarily to the absence of chloride. This indicates that dyes degradation in NaOH occurs exclusively via direct electrochemical process. However, in H2SO4, the electrode performance was poor due partially to the absence of chloride from the conductive solution. The possibility of electrode poisoning as a result of growth of adherent film on the anode surface or production of stable intermediates not easily further oxidized by direct electrolysis in H2SO4 might also be accountable for the poor performance observed in this conductive electrolyte. Optimizing the conditions that ensure effective electrochemical degradation of Acid Blue and Basic Brown dyes on lead dioxide electrode necessitates the control of all the operating factors.  相似文献   

7.
The oxidative degradation of imidacloprid (ICP) has been carried out by electrochemical advanced oxidation processes (EAOPs), anodic oxidation, and electro-Fenton, in which hydroxyl radicals are generated electrocatalytically. Carbon-felt cathode and platinum or boron-doped diamond (BDD) anodes were used in electrolysis cell. To determine optimum operating conditions, the effects of applied current and catalyst concentration were investigated. The decay of ICP during the oxidative degradation was well fitted to pseudo-first-order reaction kinetics and absolute rate constant of the oxidation of ICP by hydroxyl radicals was found to be k abs(ICP)?=?1.23?×?109 L mol?1 s?1. The results showed that both anodic oxidation and electro-Fenton process with BDD anode exhibited high mineralization efficiency reaching 91 and 94 % total organic carbon (TOC) removal at 2 h, respectively. For Pt-EF process, mineralization efficiency was also obtained as 71 %. The degradation products of ICP were identified and a plausible general oxidation mechanism was proposed. Some of the main reaction intermediates such as 6-chloronicotinic acid, 6-chloronicotinaldehyde, and 6-hydroxynicotinic acid were determined by GC-MS analysis. Before complete mineralization, formic, acetic, oxalic, and glyoxylic acids were identified as end-products. The initial chlorine and organic nitrogen present in ICP were found to be converted to inorganic anions Cl?, NO3 ?, and NH4 +.  相似文献   

8.
Boron-doped diamond (BDD) and Ti/Pt/PbO2 anodes were utilized to perform the electrodegradation of synthetic samples containing humic acid in the presence of different organic and inorganic carbon-containing and nitrogen-containing compounds. The influence of the chloride ion in the degradation process of the different synthetic samples was also assessed. The results showed that the anodic oxidation process can efficiently degrade recalcitrant compounds such as humic acid. The presence of carbonate in solution enhances the nitrogen removal, whereas it hinders the oxidation of the organic compounds. When organic nitrogen is present, it is converted to NH4 +, which in turn is oxidized to nitrate and to volatile nitrogen compounds. Hydroxyl radicals are more prone to oxidize the organic nitrogen than the ammonium nitrogen. The presence of chloride enhances the organic matter and nitrogen removal rates, BDD being the anode material that yields the highest removals.  相似文献   

9.
The electrochemical degradation of the nonsteroidal anti-inflammatory drug ketoprofen in tap water has been studied using electro-Fenton (EF) and anodic oxidation (AO) processes with platinium (Pt) and boron-doped diamond (BDD) anodes and carbon felt cathode. Fast degradation of the parent drug molecule and its degradation intermediates leading to complete mineralization was achieved by BDD/carbon felt, Pt/carbon felt, and AO with BDD anode. The obtained results showed that oxidative degradation rate of ketoprofen and mineralization of its aqueous solution increased by increasing applied current. Degradation kinetics fitted well to a pseudo-first-order reaction. Absolute rate constant of the oxidation of ketoprofen by electrochemically generated hydroxyl radicals was determined to be (2.8?±?0.1)?×?109 M?1 s?1 by using competition kinetic method. Several reaction intermediates such as 3-hydroxybenzoic acid, pyrogallol, catechol, benzophenone, benzoic acid, and hydroquinone were identified by high-performance liquid chromatography (HPLC) analyses. The formation, identification, and evolution of short-chain aliphatic carboxylic acids like formic, acetic, oxalic, glycolic, and glyoxylic acids were monitored with ion exclusion chromatography. Based on the identified aromatic/cyclic intermediates and carboxylic acids as end products before mineralization, a plausible mineralization pathway was proposed. The evolution of the toxicity during treatments was also monitored using Microtox method, showing a faster detoxification with higher applied current values.  相似文献   

10.
In this work, the electrochemical degradation of the dye azure B in aqueous solutions was studied by electrochemical advanced oxidation processes (EAOPs), electro-Fenton, and anodic oxidation processes, using Pt/carbon-felt and boron-doped diamond (BDD)/carbon-felt cells with H2O2 electrogeneration. The higher oxidation power of the electro-Fenton (EF) process using BDD anode was demonstrated. The oxidative degradation of azure B by the electrochemically generated hydroxyl radicals (?OH) follows a pseudo-first-order kinetics. The apparent rate constants of the oxidation of azure B by ?OH were measured according to pseudo-first-order kinetic model. The absolute rate constant of azure B hydroxylation reaction was determined by competition kinetics method and found to be 1.19?×?109 M?1 s?1. It was found that the electrochemical degradation of the dye leads to the formation of aromatic by-products which are then oxidized to aliphatic carboxylic acids before their almost mineralization to CO2 and inorganic ions (sulfate, nitrate, and ammonium). The evolution of the TOC removal and time course of short-chain carboxylic acids during treatment were also investigated.  相似文献   

11.
Oxidation of anthraquinonic dye Acid Blue 62 by electrolysis with conductive-diamond electrodes is studied in this work. COD, TOC, and color have been selected to monitor the degradation of the molecule as a function of several operating inputs (current density, pH, temperature, and NaCl concentration). Results show that the electrochemical oxidation of this model of large molecules follows a first order kinetics in all the conditions assessed, and it does not depend on the pH and temperature. The occurrence of chloride ions in wastewaters increases the rate of color and COD removal as a consequence of the mediated oxidation promoted by the chlorinated oxidizing species. However, chloride occurrence does not have an influence on the mineralization rate. First-order kinetic-constants for color depletion (attack to chromophores groups), oxidation (COD removal), and mineralization (TOC removal) were found to depend on the current density and to increase significantly with its value. A single model was proposed to explain these changes in terms of the mediated oxidation processes. Rate of mineralization remained very close to that expected for a purely mass transfer-controlled process. This was explained assuming that mediated oxidation does not have a significant influence on the mineralization in spite it has some effect on intermediate oxidation stages. The efficiency of the oxidation was found to depend mainly on the concentration of COD being negligible the effect of the other inputs assessed except for the occurrence of chloride ions. Opposite, the efficiency of mineralization depends on concentration of TOC and current density and it did not depend on the chloride occurrence. This observation was found to have an important influence on the power required to remove a given percentage of the initial TOC or COD. To decrease COD efficiently, the occurrence of chloride in the solution is very important, while to remove TOC efficiently, it is more important to work at low current densities and chloride effect is negligible. Energy consumption could be decreased by folds using the proper conditions.  相似文献   

12.
Shi HX  Qu JH  Wang AM  Ge JT 《Chemosphere》2005,60(3):326-333
A new and efficient method for the degradation of microcystins (one family of blue algal toxins) was developed and studied. Microcystins (MCs) in water were directly and effectively removed by active chlorine transformed in situ from the naturally existing Cl- in water resource using electrochemical method. Titanium coated with RuO2 and TiO2 was used as the anode. Microcystin-RR (MCRR) and Microcystin-LR (MCLR) were chosen as the model compounds of MCs. The results suggested that 20.87 mgl(-1) MCs (12.58 mgl(-1) MCRR and 8.29 mgl(-1) MCLR) in aqueous solution with 1.85 mM Cl- could be synchronously decomposed within 15 min electrolysis under the condition of the current density 8.89 mAcm(-2), 20 degrees C and pH 7.00. The qualitative analysis showed that the heptapetide ring and the Adda group of both treated MCs were changed. The results also indicated that the removal rates of both MCs increased with the increasing of chloride concentration and applied current density, but decreased with the increasing of initial concentration of MCs and initial pH of electrolyte. In the absence of Cl-, only a small fraction of both MCs were decomposed by direct anodic oxidation, while their almost complete removals could be obtained in the case of indirect electrooxidation with in situ electrogenerated active chlorine from Cl- in water.  相似文献   

13.
The electrochemical oxidative removal of p-chlorophenol and p-nitrophenol was studied by cyclic voltammetry (CV) and constant current electrolysis on commercially available graphite and titanium substrate insoluble anodes (TSIA). The effect of cationic cetyl trimethylammonium bromide (CTAB), anionic sodium dodecyl sulphate (SDS) and non-ionic polyoxyethylene(23)lauryl ether (Brij-35) surfactants, which prevent adherent film formation on the electrode surface were also studied. CV experiments indicate that p-chlorophenol exhibits a relatively higher tendency for film formation on graphite and that sodium chloride is a better medium for the destruction of phenols. The electrochemical oxidation of phenols under galvanostatic conditions in chloride medium with CTAB enhanced the detoxification process with significantly lower fouling effects on TSIA. The surfactants, however, did not improve phenol removal on graphite under identical experimental conditions. A charge of 2.5F per mol was found to be sufficient to achieve 44-48% removal of phenol on both the electrodes in the absence of the surfactants. A 55-65% removal was achieved in the presence of the cationic surfactant on the TSIA electrode. Phenol was removed as a low molecular weight polymer (MW approximately 4450).  相似文献   

14.
Electrochemical oxidation (ELOX) with boron-doped diamond (BDD) anodes was successfully applied to degrade a model aqueous solution of a mixture of commercial naphthenic acids (NAs). The model mixture was prepared resembling the NA and salt composition of oil sands process-affected water (OSPW) as described in the literature. The initial concentration of NAs between 70 and 120 mg/L did not influence the electrooxidation kinetics. However, increasing the applied current density from 20 to 100 A/m2 and the initial chloride concentration from 15 to 70 and 150 mg/L accelerated the rate of NA degradation. At higher chloride concentration, the formation of indirect oxidative species could contribute to the faster oxidation of NAs. Complete chemical oxygen demand removal at an initial NA concentration of 120 mg/L, 70 mg/L of chloride and applied 50 A/m2 of current density was achieved, and 85% mineralization, defined as the decrease of the total organic carbon (TOC) content, was attained. Moreover, after 6 h of treatment and independently on the experimental conditions, the formation of more toxic species, i.e. perchlorate and organochlorinated compounds, was not detected. Finally, the use of ELOX with BDD anodes produced a 7 to 11-fold reduction of toxicity (IC50 towards Vibrio fischeri) after 2 h of treatment.  相似文献   

15.
The anodic oxidation of 1.8l of solutions with mecoprop (2-(4-chloro-2-methylphenoxy)-propionic acid or MCPP) up to 0.64 g l(-1) in Na2SO4 as background electrolyte within the pH range 2.0-12.0 has been studied using a flow plant containing a one-compartment filter-press electrolytic reactor with a boron-doped diamond (BDD) anode and a stainless steel cathode, both of 20-cm2 area. Electrolyses carried out in batch under steady conditions and operating at constant current density between 50 and 150 mA cm(-2) always yield complete mineralization due to the great concentration of hydroxyl radical generated at the BDD anode. The degradation rate is practically independent of pH and Na2SO4 concentration, but it becomes faster with increasing MCPP concentration, current density, temperature and liquid flow rate. The effect of these parameters on current efficiency and energy cost has also been investigated. Generated weak oxidants such as H2O2 and peroxodisulfate ion have little influence on the mineralization process. The kinetics for the herbicide decay follows a pseudo first-order reaction with a higher rate constant when current density increases. Aromatic products such as 4-chloro-o-cresol, 2-methylhydroquinone and 2-methyl-p-benzoquinone, and generated carboxylic acids such as maleic, fumaric, lactic, pyruvic, tartronic, acetic and oxalic, have been identified as intermediates by chromatographic techniques. The initial chlorine is completely released in the form of chloride ion, which is slowly oxidized to Cl2 at the BDD anode. A reaction pathway for MCPP mineralization involving all products detected is proposed.  相似文献   

16.
In this work, the efficiency of electrochemical oxidation (EO) was investigated for removing a dye mixture containing Novacron Yellow (NY) and Remazol Red (RR) in aqueous solutions using platinum supported on titanium (Ti/Pt) as anode. Different current densities (20, 40 and 60 mA cm?2) and temperatures (25, 40 and 60 °C) were studied during electrochemical treatment. After that, the EO of each of these dyes was separately investigated. The EO of each of these dyes was performed, varying only the current density and keeping the same temperature (25 °C). The elimination of colour was monitored by UV-visible spectroscopy, and the degradation of organic compounds was analysed by means of chemical oxygen demand (COD). Data obtained from the analysis of the dye mixture showed that the EO process was effective in colour removal, in which more than 90 % was removed. In the case of COD removal, the application of a current density greater than 40 mA cm?2 favoured the oxygen evolution reaction, and no complete oxidation was achieved. Regarding the analysis of individual anodic oxidation dyes, it was appreciated that the data for the NY were very close to the results obtained for the oxidation of the dye mixture while the RR dye achieved higher colour removal but lower COD elimination. These results suggest that the oxidation efficiency is dependent on the nature of the organic molecule, and it was confirmed by the intermediates identified. Figure
Chemical structures of a NY and b RR  相似文献   

17.
以毡状活性炭纤维为阳极,不锈钢为阴极,吸附-电化学氧化耦合降解对氯苯酚废水进行了研究。考察了吸附或耦合电化学氧化过程、电流密度、支持电解质硫酸钠浓度和活性炭纤维重复使用对废水COD去除率的影响,结果表明,采用吸附-电化学氧化耦合方法,当电流密度7.6 mA/cm2支持电解质(硫酸钠)浓度为1 g/L,处理时间为180 min,4-CP废水COD去除率可达97.09%。毡状活性炭纤维对4-CP的静态吸附过程符合Langmiu吸附等温方程。建立了吸附-电化学氧化COD去除动力学模型,动力学模型参数表明,对于COD的去除,电化学氧化作用比吸附作用大。  相似文献   

18.
Wu J  Zhang H  Oturan N  Wang Y  Chen L  Oturan MA 《Chemosphere》2012,87(6):614-620
The removal of antibiotic tetracycline (TC) from water by electrochemical advanced oxidation process (EAOP) was performed using a carbon-felt cathode and a DSA (Ti/RuO(2)-IrO(2)) anode. The influence of applied current, initial pH and initial TC concentration on TC removal efficiency was investigated. Response surface methodology (RSM) based on Box-Behnken statistical experiment design (BBD) was applied to analyze the experimental variables. The positive and negative effects of variables and the interaction between variables on TC removal efficiency were determined. The applied current showed positive effect, while the initial pH value and initial tetracycline concentration gave negative effect on TC removal. The interaction between applied current and initial pH value was significant, while the interactions of initial TC concentration with applied current or initial pH were not pronounced. The results of adequacy check confirmed that the proposed models were accurate and reliable to analyze the variables of EAOP. The reaction intermediates were identified by high-performance liquid chromatography-mass spectrometry (LC-MS) technique and a plausible degradation pathway for tetracycline degradation was proposed. The acute toxicity experiments illustrated that the Daphnia magna immobilization rate reached the maximum after 240 min of electrolysis and then decreased with the progress of the reaction.  相似文献   

19.
This paper reports the degradation of 2,4-DP (2-(2,4-dichlorophenoxy)-propionic acid) solutions of pH 3.0 by environmentally friendly electrochemical methods such as anodic oxidation, electro-Fenton and photoelectro-Fenton with a Pt or boron-doped diamond (BDD) anode. In the two latter techniques an O(2)-diffusion cathode was used and 1.0mM Fe(2+) was added to the solution to give hydroxyl radical (*OH) from Fenton's reaction between Fe(2+) and H(2)O(2) generated at the cathode. All treatments with BDD are viable to decontaminate acidic wastewaters containing 2,4-DP since they give complete mineralization, with loss of chloride ion, at high current due to the great production of oxidant *OH at the BDD surface favoring the destruction of final carboxylic acids. *OH formed from Fenton's reaction destroys more rapidly aromatic products, making the electro-Fenton and photoelectro-Fenton processes much more efficient than anodic oxidation. UVA light in photoelectro-Fenton with BDD has little effect on the degradation rate of pollutants. The comparative procedures with Pt lead to slower decontamination because of the lower oxidizing power of this anode. The effect of current on the degradation rate and efficiency of all methods is studied. The 2,4-DP decay always follows a pseudo-first-order kinetics. Chlorohydroquinone, chloro-p-benzoquinone and maleic, fumaric, malic, lactic, pyruvic, acetic, formic and oxalic acids are detected as products by chromatographic techniques. A general sequence accounting for by the reaction of all these intermediates with the different oxidizing agents is proposed.  相似文献   

20.
Electrochemical treatment can solve the problems arising due to effluents and offer an effective alternative to the existing methods. An undivided static electrolyser was charged with distillery effluent and the organics were oxidized electrochemically. Anodized graphite plate anodes and graphite cathodes were used for the treatment of distillery effluent. The effect of pH and current density on the treatment was studied. Sodium fluoride, sodium chloride and sodium bromide were chosen as electrolyte and their influence was found out. Complete decolorization has been observed in all cases. A maximum of 93.5% of biological oxygen demand reduction, 85.2% of chemical oxygen demand reduction and 98.0% absorbance reduction were obtained in the presence of sodium chloride as supporting electrolyte. Probable mechanism was also proposed for the oxidation of organics present in the effluent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号