首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Environmental Science and Pollution Research - The Potiguar Basin has oil and gas production fields offshore and onshore. All treated produced water (PW) from these fields is discharged through...  相似文献   

2.
The discharge of oil well produced water (PW) provides a constant source of contaminants to the marine environment including polycyclic aromatic hydrocarbons, alkylated phenols, metals and production chemicals. High concentrations of PW cause adverse effects to exposed biota, including reduced survival, growth and reproduction. Here we explore the effects of PW on immune function in the blue mussel, Mytilus edulis. Mussels were exposed for 21 days to sublethal PW concentrations (0.125-0.5%) and cellular parameters were measured. Cell viability, phagocytosis and cytotoxicity were inhibited after exposure to 0.25% and 0.5% PW, whilst the 0.125% PW treatment produced significant increases in these biomarker responses. This biphasic response was only observed after 7 days exposure; longer exposure periods led to a reduction in immune parameters. Results indicate that PW concentrations close to the discharge point cause modulation to cellular immunity. The implications for longer-term disease resistance are discussed.  相似文献   

3.
In this era of globalization, various products and technologies are being developed by the industries. While resources and energy are utilized from processes, wastes are being excreted through water streams, air, and ground. Without realizing it, environmental pollutions increase as the country develops. Effective technology is desired to create green factories that are able to overcome these issues. Wastewater is classified as the water coming from domestic or industrial sources. Wastewater treatment includes physical, chemical, and biological treatment processes. Aerobic and anaerobic processes are utilized in biological treatment approach. However, the current biological approaches emit greenhouse gases (GHGs), methane, and carbon dioxide that contribute to global warming. Microalgae can be the alternative to treating wastewater as it is able to consume nutrients from wastewater loading and fix CO2 as it undergoes photosynthesis. The utilization of microalgae in the system will directly reduce GHG emissions with low operating cost within a short period of time. The aim of this review is to discuss the uses of native microalgae species in palm oil mill effluent (POME) and flue gas remediation. In addition, the discussion on the optimal microalgae cultivation parameter selection is included as this is significant for effective microalgae-based treatment operations.  相似文献   

4.
An ex vivo gill EROD assay was applied in Atlantic cod (Gadus morhua) as a biomarker for waterborne CYP1A-inducing compounds derived from oil production at sea. Exposure to nominal concentrations of 1 ppm or 10 ppm North Sea crude oil in a static water system for 24 h caused a concentration-dependent gill EROD induction. Further, exposure of cod for 14 days to environmentally relevant concentrations of produced water (PW, diluted 1:200 or 1:1000) from a platform in the North Sea using a flow-through system resulted in a concentration-dependent induction of gill EROD. Crude oil (0.2 ppm) from the same oil field also proved to induce EROD. Finally, gill EROD activity in cod caged for 6 weeks at 500-10 000 m from two platforms outside Norway was measured. The activities in these fish were very low and did not differ from those in fish caged at reference sites.  相似文献   

5.
The global olive oil production for 2010 is estimated to be 2,881,500 metric tons. The European Union countries produce 78.5 % of the total olive oil, which stands for an average production of 2,136,000 tons. The worldwide consumption of olive oil increased of 78 % between 1990 and 2010. The increase in olive oil production implies a proportional increase in olive mill wastes. As a consequence of such increasing trend, olive mills are facing severe environmental problems due to lack of feasible and/or cost-effective solutions to olive-mill waste management. Therefore, immediate attention is required to find a proper way of management to deal with olive mill waste materials in order to minimize environmental pollution and associated health risks. One of the interesting uses of solid wastes generated from olive mills is to convert them as inexpensive adsorbents for water pollution control. In this review paper, an extensive list of adsorbents (prepared by utilizing different types of olive mill solid waste materials) from vast literature has been compiled, and their adsorption capacities for various aquatic pollutants removal are presented. Different physicochemical methods that have been used to convert olive mill solid wastes into efficient adsorbents have also been discussed. Characterization of olive-based adsorbents and adsorption mechanisms of various aquatic pollutants on these developed olive-based adsorbents have also been discussed in detail. Conclusions have been drawn from the literature reviewed, and suggestions for future research are proposed.  相似文献   

6.
Excessive accumulation of biomass within gas-phase biofilters often results in the deterioration of removal performance. Compared with chemical and biological technologies, physical technologies are more effective in removing biomass and inducing less inhibition of the biofilter performance. This study applied different physical technologies, namely, air sparging, mechanical mixing, and washing with water at various temperatures, to remove excess biomass in biofilters treating toluene. Filter pressure drop, removed dry biomass, biofilter performance, and microbial metabolic characteristics were analyzed to evaluate the effectiveness of the methods. Results showed that air sparging was inefficient for biomass removal (1 kg dry biomass/m3 filter), whereas mechanical mixing significantly inhibited removal efficiencies (<30%). Washing of the packing with fluids was feasible, and hot fluids can remove a large amount of biomass. However, hot fluids reduce microbial activity and inhibit removal performance. Washing of the packing with either 20°C or 50°C water showed efficiency as >3 kg dry biomass/m3 filter can be removed at both temperatures with removal efficiencies at approximately 40% after treatment. Finally, different technologies were compared and summarized to propose an optimized strategy of biomass control for industrial biofilters.

Implications: This study is to apply different physical technologies, namely, air sparging, mechanical mixing, and washing with water of different temperatures, to remove the excess biomass in biofilters treating toluene. The filter pressure drop, removed dry biomass, biofilter performance, and microbial metabolic characteristics were all analyzed to evaluate the effectiveness of the methods. The results of this study provide useful information regarding biomass control of industrial biofilters.  相似文献   


7.
Jeong J  Kim JY  Cho M  Choi W  Yoon J 《Chemosphere》2007,67(4):652-659
Recently, the electrochemical disinfection has gained a great interest as one of the alternatives to conventional chlorination due to its high effectiveness and environmental compatibility. Despite the extensive reports on electro-chlorination disinfection, few researches were reported on the systems without generating chlorine. This study mainly focused on the potential disinfecting ability of electro-generated oxidants other than chlorine with using an inert medium (chloride-free phosphate buffer solution), which was intended to exclude the formation of chlorine during the electrolysis, as the Escherichia coli as an indicator bacterium was disinfected by applying the current to a platinum anode. The electrochemical inactivation of E. coli without chlorine production was demonstrated to occur in two distinct stages. The first stage inactivation takes place rapidly at the beginning of electrolysis, which appears to be achieved by the electrosorption of negatively charged E. coli cells to the anode surface, followed by a direct electron transfer reaction. As the electrolysis continues further, the inactivation becomes slower but steady, in contrast to the first stage of inactivation. This was attributed to the action of reactive oxidants generated from water discharge, such as hydroxyl radical. Overall, this study suggests that the electrochemical disinfection could be successfully performed even without producing chlorine, recommending the potential application for disinfecting water that does not allow including any chloride ions (such as the production of ultra-pure sterilized water for semiconductor washing).  相似文献   

8.
高级氧化技术降解水中有机磷农药的研究进展   总被引:7,自引:0,他引:7  
综述了近年来发展迅速的高级氧化技术,主要包括臭氧高级氧化技术、光催化氧化法、超声降解法、电化学水处理技术和超临界水氧化法等.结合有机磷农药废水处理方法的进展,介绍了各种高级氧化技术在机理研究和应用方面取得的成果和存在的问题,并指出了高级氧化技术在有机废水处理方面所具有的潜力.  相似文献   

9.
Among all the pharmaceutical drugs that contaminate the environment, antibiotics occupy an important place due to their high consumption rates in both veterinary and human medicine. The present study examined the ability of Pseudomonas putida to grow on the antibiotic wastewater, currently expanding in Tunisia, containing amoxicillin and cefadroxil. P. putida was very efficient to grow quickly in pharmaceutical wastewater (PW) and in reducing the total dissolved solids to 80.1 %. Cytotoxicity of PW, before and after biodegradation with P. putida mt-2, was evaluated in vitro, using the MTT assay, against four human tumor cell lines such as A549 (lung cell carcinoma), HCT15 (colon cell carcinoma), MCF7 (breast adenocarcinoma), and U373 (glioma cell carcinoma). The PW reduced all human cell lines viability in a dose-dependent manner. This activity was very remarkable against U373 cell line. For this reason, we have tested the genotoxicity of PW using comet assay for quantification of DNA fragmentation. In fact, PW has statistically significant (p?<?0.001) influence on DNA. Indeed, the percentage of genotoxicity was 66.87 and 87.5 %, after 24 and 48 h of treatment, respectively. However, cytotoxicity and genotoxicity decreased strongly when tested the PW obtained after incubation with P. putida mt-2. Our results indicate that P. putida is a promising and improved alternative to treating industrial-scale effluent compared to current chemical treatment procedures used by the industrials.  相似文献   

10.
A combined treatment process utilizing steam distillation followed by electrochemical peroxidation (ECP) has been utilized to remove >90% of the polychlorinated biphenyls (PCBs) in St. Lawrence River sediment and destroy 95% of the PCBs recovered in the condensate. 2 l of condensate were collected by boiling 500 grams of sediment containing 4.3 mg PCBs. Most of the PCBs (82.3%) were recovered as a small volume (<1 ml) of yellow oil floating on the condensate and coating glassware surfaces. The aqueous phase PCBs (182 μg/l) were destroyed (95%) by three sequential ECP treatments at 16.8°C and pH 5, utilizing 1 ml of H2O2 (3%) and periodically reversed current (0.75–1.0 A @ 10 volts). Oxidation is primarily mediated by hydroxyl radicals produced by the reaction of hydrogen peroxide with electrochemically generated ferrous iron (Fenton's reagent). This work suggests steam extraction, in combination with advanced oxidation technologies, provides an effective treatment strategy for contaminated solids.  相似文献   

11.
Characterization of produced waters (PWs) is an initial step for determining potential beneficial uses such as irrigation and surface water discharge at some sites. A meta-analysis of characteristics of five PW sources [i.e. shale gas (SGPWs), conventional natural gas (NGPWs), conventional oil (OPWs), coal-bed methane (CBMPWs), tight gas sands (TGSPWs)] was conducted from peer-reviewed literature, government or industry documents, book chapters, internet sources, analytical records from industry, and analyses of PW samples. This meta-analysis assembled a large dataset to extract information of interest such as differences and similarities in constituent and constituent concentrations across these sources of PWs. The PW data analyzed were comprised of 377 coal-bed methane, 165 oilfield, 137 tight gas sand, 4000 natural gas, and 541 shale gas records. Majority of SGPWs, NGPWs, OPWs, and TGSPWs contain chloride concentrations ranging from saline (>30 000 mg L−1) to hypersaline (>40 000 mg L−1), while most CBMPWs were fresh (<5000 mg L−1). For inorganic constituents, most SGPW and NGPW iron concentrations exceeded the numeric criterion for irrigation and surface water discharge, while OPW and CBMPW iron concentrations were less than the criterion. Approximately one-fourth of the PW samples in this database are fresh and likely need minimal treatment for metal and metalloid constituents prior to use, while some PWs are brackish (5000-30 000 mg Cl L−1) to saline containing metals and metalloids that may require considerable treatment. Other PWs are hypersaline and produce a considerable waste stream from reverse osmosis; remediation of these waters may not be feasible. After renovation, fresh to saline PWs may be used for irrigation and replenishing surface waters.  相似文献   

12.
Optimizing electron spin resonance detection of hydroxyl radical in water   总被引:20,自引:0,他引:20  
Cheng SA  Fung WK  Chan KY  Shen PK 《Chemosphere》2003,52(10):1797-1805
The parameters affecting the electron spin resonance (ESR) detection of hydroxyl free radical in water are studied and optimized. The hydroxyl radical is generated by the Fenton reaction with iron (II) ammonium sulfate and hydrogen peroxide reacting in a phosphate buffer using N-tert-butyl-alpha-phenylnitron as the spin trap. The concentrations of Fe2+, H2O2, and phosphate buffer are the parameters studied. The Taguchi method and the orthogonal experiment design were used to evaluate the effects of these parameters on the ESR signal intensity. By the analysis of the signal-to-noise ratio and the analysis of variance, the order of importance of the various parameters on the hydroxyl radical formation is determined for optimal ESR detection of hydroxyl radical. The results will help the development of water purification technologies using hydroxyl free radical as a green oxidant.  相似文献   

13.
Water is effective in leaching out Cr6+ from a mixture of paint powders and abrasive blast media. However, acids such as HNO3, HCl, and H2SO4 significantly enhance the leaching procedure. Cr ions in the leaching solutions are successfully removed by electrochemical precipitation. The consumable Fe electrodes generate ferrous ions to cause the reduction of Cr6+ to Cr3+. Cr3+ ions along with Fe2+ and Fe3+ are then removed mainly by precipitation as Cr(OH)3, Fe(OH)2, and Fe(OH)3 near the cathode where OH- ions are generated by water electrolysis. The electrochemical process is capable of discharging low levels of Cr6+, less than 1 mg/L, without pH adjustment.  相似文献   

14.
Peat-based growing media are not ecologically sustainable and peat extraction threatens sensitive peatland ecosystem. In this study, olive-stone waste (OSW) and paper waste (PW) were used in different ratios—as growing media—for ornamental crop production, as peat (P) substitutes. Marigold (Calendula officinalis L.), petunia (Petunia x hybrita L.) and matthiola (Matthiola incana L.) plants were grown in (1) P (100%), (2) P:OSW (90%:10%), (3) P:OSW (70%:30%), and (4) P:OSW:PW (60%:20%:20%). The physicochemical properties of these substrates and the effects on plant growth were determined. The addition of 10–30% OSW into the substrate increased marigold height compared to plants grown in 100% peat. No differences in plant size, plant biomass (leaves and flowers), and dry matter content were found. Adding PW, in combination with OSW, maintained marigold height and total number of flowers produced to similar levels as in plants grown in 100% peat. In matthiola, adding 30% OSW into the substrate reduced plant size and fresh weight, but not plant height. No differences were observed when plants grew in lower OSW (i.e., 10%) content. Petunia’s height, its total number of flowers and flower earliness (flower opening) were increased in the presence of OSW compared to the plants grown in 100% peat. The addition of OSW did not affect petunia’s size and fresh weight among treatments. The addition of PW suppressed several plant growth-related parameters for both matthiola and petunia. The insertion of OSW did not change leaf chlorophyll content whereas the presence of PW decreased chlorophylls for marigold, petunia, and matthiola. Both OSW and PW altered the content of total phenolics and antioxidant capacity of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) in leaves and flowers for marigold and petunia. Both 30% OSW and PW increased antioxidative enzyme metabolism due to the increased damage index and lipid peroxidation observed in plants. Leaf N and P content decreased in PW-based media, while matthiola displayed visual phytotoxicity symptoms when PW was added into the substrate. The present work indicates that up to 30% of OSW can replace peat for marigold and petunia growing and only up to 10% of OSW for matthiola, while the addition of PW on top of OSW is not recommended, so further research is needed.  相似文献   

15.
While various energy-producing technologies have been analyzed to assess the amount of energy returned per unit of energy invested, this type of comprehensive and comparative approach has rarely been applied to other potentially limiting inputs such as water, land, and time. We assess the connection between water and energy production and conduct a comparative analysis for estimating the energy return on water invested (EROWI) for several renewable and non-renewable energy technologies using various Life Cycle Analyses. Our results suggest that the most water-efficient, fossil-based technologies have an EROWI one to two orders of magnitude greater than the most water-efficient biomass technologies, implying that the development of biomass energy technologies in scale sufficient to be a significant source of energy may produce or exacerbate water shortages around the globe and be limited by the availability of fresh water.  相似文献   

16.
Oil and gas production in the Western United States has increased considerably over the past 10 years. While many of the still limited oil and gas impact assessments have focused on potential human health impacts, the typically remote locations of production in the Intermountain West suggests that the impacts of oil and gas production on national parks and wilderness areas (Class I and II areas) could also be important. To evaluate this, we utilize the Comprehensive Air quality Model with Extensions (CAMx) with a year-long modeling episode representing the best available representation of 2011 meteorology and emissions for the Western United States. The model inputs for the 2011 episodes were generated as part of the Three State Air Quality Study (3SAQS). The study includes a detailed assessment of oil and gas (O&G) emissions in Western States. The year-long modeling episode was run both with and without emissions from O&G production. The difference between these two runs provides an estimate of the contribution of the O&G production to air quality. These data were used to assess the contribution of O&G to the 8 hour average ozone concentrations, daily and annual fine particulate concentrations, annual nitrogen deposition totals and visibility in the modeling domain. We present the results for the Class I and II areas in the Western United States. Modeling results suggest that emissions from O&G activity are having a negative impact on air quality and ecosystem health in our National Parks and Class I areas.

Implications: In this research, we use a modeling framework developed for oil and gas evaluation in the western United States to determine the modeled impacts of emissions associated with oil and gas production on air pollution metrics. We show that oil and gas production may have a significant negative impact on air quality and ecosystem health in some national parks and other Class I areas in the western United States. Our findings are of particular interest to federal land managers as well as regulators in states heavy in oil and gas production as they consider control strategies to reduce the impact of development.  相似文献   


17.

The demand for high-quality safe and clean water supply has revolutionized water treatment technologies and become a most focused subject of environmental science. Water contamination generally marks the presence of numerous toxic and harmful substances. These contaminants such as heavy metals, organic and inorganic pollutants, oil wastes, and chemical dyes are discharged from various industrial effluents and domestic wastes. Among several water treatment technologies, the utilization of silica nanostructures has received considerable attention due to their stability, sustainability, and cost-effective properties. As such, this review outlines the latest innovative approaches for synthesis and application of silica nanostructures in water treatment, apart from exploring the gaps that limit their large-scale industrial application. In addition, future challenges for improved water remediation and water quality technologies are keenly discussed.

  相似文献   

18.
The seed of Zanthoxylum bungeanum (Z. bungeanum) is a by-product of pepper production and rich in unsaturated fatty acid, cellulose, and protein. The seed oil obtained from traditional producing process by squeezing or extracting would be bad quality and could not be used as edible oil. In this paper, a new preparation method of Z. bungeanum seed kernel oil (ZSKO) was developed by comparing the advantages and disadvantages of alkali saponification-cold squeezing, alkali saponification-solvent extraction, and alkali saponification-supercritical fluid extraction with carbon dioxide (SFE-CO2). The results showed that the alkali saponification-cold squeezing could be the optimal preparation method of ZSKO, which contained the following steps: Z. bungeanum seed was pretreated by alkali saponification under the conditions of adding 10 %NaOH (w/w), solution temperature was 80 °C, and saponification reaction time was 45 min, and pretreated seed was separated by filtering, water washing, and overnight drying at 50 °C, then repeated squeezing was taken until no oil generated at 60 °C with 15 % moisture content, and ZSKO was attained finally using centrifuge. The produced ZSKO contained more than 90 % unsaturated fatty acids and no trans-fatty acids and be testified as a good edible oil with low-value level of acid and peroxide. It was demonstrated that the alkali saponification-cold squeezing process could be scaled up and applied to industrialized production of ZSKO.  相似文献   

19.
In many natural and contaminated aquifers, geochemical processes result in the production or consumption of dissolved gases. In cases where methanogenesis or denitrification occurs, the production of gases may result in the formation and growth of gas bubbles below the water table. Near the water table, entrapment of atmospheric gases during water table rise may provide a significant source of O(2) to waters otherwise depleted in O(2). Furthermore, the presence of bubbles will affect the hydraulic conductivity of an aquifer, resulting in changes to the groundwater flow regime. The interactions between physical transport, biogeochemical processes, and gas bubble formation, entrapment and release is complex and requires suitable analysis tools. The objective of the present work is the development of a numerical model capable of quantitatively assessing these processes. The multicomponent reactive transport code MIN3P has been enhanced to simulate bubble growth and contraction due to in-situ gas production or consumption, bubble entrapment due to water table rise and subsequent re-equilibration of the bubble with ambient groundwater, and permeability changes due to trapped gas phase saturation. The resulting formulation allows for the investigation of complex geochemical systems where microbially mediated redox reactions both produce and consume gases as well as affect solution chemistry, alkalinity, and pH. The enhanced model has been used to simulate processes in a petroleum hydrocarbon contaminated aquifer where methanogenesis is an important redox process. The simulations are constrained by data from a crude oil spill site near Bemidji, MN. Our results suggest that permeability reduction in the methanogenic zone due to in-situ formation of gas bubbles, and dissolution of entrapped atmospheric bubbles near the water table, both work to attenuate the dissolved gas plume emanating from the source zone. Furthermore, the simulations demonstrate that under the given conditions more than 50% of all produced CH(4) partitions to the gas phase or is aerobically oxidised near the water table, suggesting that these processes should be accounted for when assessing the rate and extent of methanogenic degradation of hydrocarbons.  相似文献   

20.
Hu M  Xu Y 《Chemosphere》2004,54(3):431-434
Reactive brilliant red X3B, one recalcitrant textile dye, was decolorized in water by (Photo)-Fenton reactions and TiO(2) photocatalysis [Chemosphere 43 (2001) 1103]. Complementary to this study, the present work has shown the effectiveness of several Keggin-type heteropolyoxomatalates (POM) as a photocatalyst for X3B degradation in water at pH 1.0 under UV light (lambda>/=320 nm) irradiation. Among four POMs, the relative activity was observed to be H(3)PW(12)O(40)z.Gt;H(4)SiW(12)O(40)>H(4)GeW(12)O(40)>H(3)PMo(12)O(40). The reaction was dependent of pH, light intensity and the catalyst loading, but not obviously of the molecular oxygen dissolved in water. Compared to the photocatalyst of TiO(2) (Degussa p25), H(3)PW(12)O(40) was less efficient for the dye bleaching and mineralization. The mechanism study reveals that hydroxyl radicals are involved in the degradation of X3B (and Rhodamine B) by POM photocatalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号