首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study explores the trend of selected air pollutants, carbon dioxide (CO2), nitrogen dioxide NO2), sulfur dioxide (SO2) and particulate matter 10 microns in diameter (PM10) in India. Environmental Kuznets curves (EKC), which show the association of the economy and pollution, are fitted for selected Indian states to understand whether EKC in India fits well with the inverted “U” shape. We observed that CO2 and PM10 are steadily increasing in India. The states of Kerala and Punjab follow the inverted “U” shape of EKC, while Bihar, Uttar Pradesh, West Bengal, and Maharashtra may take decades to reduce pollutants. A new Sustainable Human Development Index calculated in this paper indicates a diverse picture of Indian states, especially in regard to environmental parameters. The government needs to implement stringent, state‐specific laws and regulations to assist in curbing air pollutants. The time has also come to represent the rankings of states in terms of an environmentally inclusive development index.  相似文献   

2.
The impact pathway approach (IPA) is used to estimate quantitatively the level of health effects caused by particulate matter (PM10) and sulfur dioxide (SO2) emission from a lignite-fired power plant located in the Mae Moh area in northern region of Thailand. Health benefits are then assessed by comparing the levels of estimated health impacts without and with the installation of the flue gas desulfurization (FGD) equipment. The US EPA industrial source complex model is used to model air pollution dispersion at the local scale, and the sector average limited mixing meso-scale model is used to model air pollution transport at the regional scale. The quantification of the health end points in physical terms is carried out using the dose–response functions established recently for the population in Bangkok, Thailand. Monetarization of these effects is based on the benefit transfer method with appropriate adjustment. Finally, it has been found that the installation of the FGD to control SO2 emission at Mae Moh significantly reduces adverse health effects not only on the population living near the power plant but also all over the country. A FGD unit installed at the 300-MW power unit can result, on average, in 16 fewer cases of acute mortality, 12 fewer cases of respiratory and cardiac hospital admissions, and almost 354,000 fewer days with acute respiratory symptoms annually. In monetary terms this benefit is equivalent to US $18.2 million (1995 prices) per annum. This benefit is much higher than the annualized investment and operation costs of FGD (US $7.4 million/yr).  相似文献   

3.
长三角地区作为我国大气污染较为严重区域之一,如何在保持经济增长的同时减少CO2与大气污染物的排放已成为一个重要挑战。本研究基于2007年与2012年长三角区域间投入产出表,定量分析了长三角地区省市间贸易引致的二氧化碳和大气污染物排放转移特征和变化趋势。同时,运用产业关联系数法,从前向关联与后向关联双重视角分析了长三角地区减缓CO2和大气污染物排放的关键行业。研究结果表明,长三角的SO2、PM2.5排放总量表现为消费端大于生产端,CO2、NOx排放总量表现为生产端大于消费端。安徽省总体呈现为长三角地区贸易的SO2、NOx与PM2.5排放净调出地,而上海与浙江表现为多数污染物排放净调入地。CO2与大气污染物协同前向减排的关键行业为江苏省、浙江省和安徽省的电力、热力的生产和供应业,安徽省的煤炭开采和洗选业等,可以通过生产端技术革新和能源结构优化来促进减排;CO2与大气污染物后向协同减排的关键行业为江苏省、浙江省和安徽省的建筑业等,对于这些行业,调整消费结构是有效的减排措施。为更好地制定长三角地区减排与污染防治政策,应当综合考虑行业减排、协同减排等,以确保经济持续增长的同时达到减排目标。  相似文献   

4.
CO2 and SO2 are some of the main polluting gases emitted into atmosphere in combustion processes using fossil fuel for energy production. The former is one of the major contributors to build-up the greenhouse effect implicated in global climate change and the latter produces acid rain. Oxy-fuel combustion is a technology, which consists in burning the fuel with a mix of pure O2 and recirculated CO2. With this technology the CO2 concentration in the flue gas may be enriched up to 95%, becoming possible an easy CO2 recovery. In addition, oxy-fuel combustion in fluidized beds allows in situ desulfurization of combustion gases by supplying calcium based sorbent.In this work, the effect of the principal operation variables affecting the sulfation reaction rate in fluidized bed reactors (temperature, CO2 partial pressure, SO2 concentration and particle size) under typical oxy-fuel combustion conditions have been analyzed in a batch fluidized bed reactor using a limestone as sorbent. It has been observed that sulfur retention can be carried out by direct sulfation of the CaCO3 or by sulfation of the CaO (indirect sulfation) formed by CaCO3 calcination. Direct sulfation and indirect sulfation operating conditions depended on the temperature and CO2 partial pressure. The rate of direct sulfation rose with temperature and the rate of indirect sulfation for long reaction times decreased with temperature. An increase in the CO2 partial pressure had a negative influence on the sulfation conversion reached by the limestone due to a higher temperature was needed to work in conditions of indirect sulfation. Thus, it is expected that the optimum temperature for sulfur retention in oxy-fuel combustion in fluidized bed reactors be about 925–950 °C. Sulfation reaction rate rose with decreasing sorbent particle size and increasing SO2 concentration.  相似文献   

5.
Carbon dioxide is the major greenhouse gas responsible for global warming. Man-made CO2 emissions contribute approximately 63% of greenhouse gases and the cement industry is responsible for approximately 5% of CO2 emissions emitting nearly 900 kg of CO2 per 1000 kg of cement. CO2 from a cement plant was captured and purified to 98% using the monoethanolamine (MEA) based absorption process. The capture cost was $51 per tonne of CO2 captured, representing approximately 90% of total cost. Steam was the main operating cost representing 39% of the total capture cost. Switching from coal to natural gas reduces CO2 emissions by about 18%. At normal load, about 36 MW of waste heat is available for recovery to satisfy the parasitic heat requirements of MEA process; however, it is very difficult to recover.  相似文献   

6.
This paper presents projections of motor vehicles, oil demand, and carbon dioxide (CO2) emissions for India through the year 2040. The populations of highway vehicles and two‐wheelers are projected under three different scenarios on the basis of economic growth and average household size in India. The results show that by 2040, the number of highway vehicles in India would be 206‐309 million. The oil demand projections for the Indian transportation sector are based on a set of nine scenarios arising out of three vehicle‐growth and three fuel‐economy scenarios. The combined effects of vehicle‐growth and fuel‐economy scenarios, together with the change in annual vehicle usage, result in a projected demand in 2040 by the transportation sector in India of 404‐719 million metric tons (8.5‐15.1 million barrels per day). The corresponding annual CO2 emissions are projected to be 1.2‐2.2 billion metric tons.  相似文献   

7.
Coal is not only an important energy source in China but also a major source of air pollution. Because of this, China’s national sulfur dioxide (SO2) emissions have been the highest in the world for many years, and since the 1990s, the territory of China’s south and southwest has become the third largest acid-rain-prone region in the world. In order to control SO2 emissions, the Chinese government has formulated and promulgated a series of policies and regulations, but it faces great difficulties in putting them into practice. In this retrospective look at the history of SO2 control in China, we found that Chinese SO2 control policies have become increasingly strict and rigid. We also found that the environmental policies and regulations are more effective when central officials consistently give environmental protection top priority. Achieving China’s environmental goals, however, has been made difficult by China’s economic growth. Part of this is due to the practice of environmental protection appearing in the form of an ideological “campaign” or “storm” that lacks effective economic measures. More recently, better enforcement of environmental laws and regulations has been achieved by adding environmental quality to the performance assessment metrics for leaders at all levels. To continue making advances, China needs to reinforce the economic and environmental assessments for pollution control projects and work harder to integrate economic measures into environmental protection. Nonetheless, China has a long way to go before economic growth and environmental protection are balanced.  相似文献   

8.
This paper explores the relationship between government spending and environmental quality using panel data for 94 countries for the period 1970–2008. We identify and estimate three distinct channels that comprise the total direct effect of government expenditure on air pollution, namely a marginal effect, an effect conditional on economic growth and an effect conditional on institutional quality. Since adjustment rate of emissions to their equilibrium level is slow due to technological and institutional reasons, we explicitly take into account dynamics by applying appropriate econometric methods. The results demonstrate that there is a significant alleviating direct effect of government expenditure on SO2 and NOx emissions, which increases with the level of economic growth and democracy. However, there is no evidence of a significant effect on pollutants with more global impact on the environment and human health, like N2O and CO2, implying that the adoption of international environmental treaties is required in this case.  相似文献   

9.
京津冀地区重点耗煤行业大气污染物排放清单研究   总被引:1,自引:0,他引:1       下载免费PDF全文
本研究通过京津冀地区各行业的年度煤炭消费量确定火电行业、钢铁行业和焦化行业为重点耗煤行业,以在线监测数据、污染源调查(现场调研、环评、验收)数据、排放因子数据为基础,自下而上建立了2013年京津冀地区重点耗煤行业大气污染物排放清单,分析研究了SO_2、NO_x和PM_(10)的排放量与污染贡献分布情况,掌握了京津冀地区重点耗煤行业大气污染物排放现状,为大气污染物减排提供数据基础。研究表明,2013年京津冀火电、钢铁焦化行业共排放SO_2 72.35万t、NO_x 131.99万t、PM_(10) 30.36万t。  相似文献   

10.
Compositional changes to air quality from coal mining are not only the most visible impact from these activities on the environment, they can also immediately affect the health of mine professionals and adjoining populations. The presence of gases and suspended solids emitted by mining activities affects the human respiratory system and decreases production in mines. This article summarizes a case study of several Northern Coalfields Limited (NCL) coal mines with an emphasis on particulate matter (PM) to report the status of air quality connected to coal production and overburden removal. The concentrations of sulfur dioxide (SO2), nitrogen oxides (NOx), and suspended particulate matter (SPM) reported in the literature are also summarized in table form to allow comparisons to the permissible standards set by the Indian Central Pollution Control Board (CPCB) and other standards used around the world. An up‐to‐date status of air quality at coal mines is compared for mines located in different parts of India. Subsequently, all coal mines were divided into different classes in regard to the severity of their emissions. These classes are, in increasing order of severity, green, yellow, red, and black. SPM measurements were tabulated in regard to concentration and composition. Our article concludes with the recommendation that an environmental impact assessment (EIA) to be conducted to better characterize changes in the environment from mining emissions to develop integrated mitigation measures and to identify additional parameters to define air quality at mines.  相似文献   

11.
Studies of air quality were carried out in the towns of Kajang, Nilai and Banting in the Langat River Basin, southern region of Kuala Lumpur to determine the status and trend of air quality. The determination of air quality was based on several parameters such as suspended solids with diameters less than 10???m (PM10) and gaseous pollutants of sulphur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3), and carbon monoxide (CO). Primary concentration data of air pollutants were compiled through fieldwork studies and combined with secondary data obtained from the regular monitoring data as collected by Alam Sekitar Malaysia Sdn. Bhd. (ASMA) on behalf of Malaysian Department of Environment (DOE) at their stations in Kajang and Nilai. Results showed that the average concentrations of PM10, SO2, NO2, O3, and CO at all sampling stations were still below the permissible values recommended by the Malaysian DOE. The level of gaseous pollutants of NO2, O3, and CO was recorded at statistically higher levels (p?<?0.05) than values recorded at the control station at Pangsun Recreational Area. These pollutants were suspected to have originated mainly from exhaust systems of motor vehicles. Data for the years 1996 to 2006 as obtained from ASMA showed long-term air quality trends of increasing O3 and NO2 concentrations in Kajang whilst concentrations of PM10 recorded at both Kajang and Nilai stations were mostly expected coming from transboundary sources especially biomass burning and the development activities around the study areas.  相似文献   

12.
本文以2006—2015年长江三角洲城市群为研究对象,分析该地区不同部门因能源消费而产生的典型污染物排放量,然后利用LMDI模型,对空气污染进行社会经济驱动因素分析。结果表明:该地区CO_2、SO_2、PM_(2.5)与PM_(10)等空气污染物排放量均呈现先快速增长后缓慢减少的趋势,排放的峰值多出现在了2013年,而NO_x则一直保持增长的趋势。其中,电力与工业部门是空气污染物的主要排放源,但对排放量贡献呈减少趋势,生活部门与交通部门污染物排放量则逐步增长,尤其是对PM_(2.5)与PM_(10)排放量的贡献不可忽视。人口与经济增长对污染物排放量起到了正向拉动作用,经济因素的驱动作用最为明显,其效应值呈现先小幅增加后大幅下降的趋势,能源效率与能源结构有抑制作用,其对污染物排放的效应值仅次于经济因素,而能源结构变化的效应很小。  相似文献   

13.
We propose a productivity index for undesirable outputs such as carbon dioxide (CO2) and sulfur dioxide (SO2) emissions and measure it using data from 51 developed and developing countries over the period 1971–2000. About half of the countries exhibit the productivity growth. The changes in the productivity index are linked with their respective per capita income using a semi-parametric model. Our results show technological catch up of low-income countries. However, overall productivities both of SO2 and CO2 show somewhat different results.  相似文献   

14.
The purpose of this study was to investigate the effects of increased oxygen and carbon dioxide concentration on the formation of sulfur trioxide during oxy-coal combustion in two different types of pilot-scale furnaces: a pulverized-coal and a circulating-fluidized-bed-fired system.For pulverized-coal (PC) testing, concentrations of SO3 and SO2 were significantly higher for oxy-fired conditions as compared to air-fired conditions. For a high-sulfur Illinois bituminous coal, SO3 concentrations were 4–6 times greater on average. When firing a low-sulfur Utah Bituminous coal, SO3 concentrations were similar for oxy-firing vs. air-firing, and the overall levels were very low compared to the Illinois coal, consistent with differences in the fuel sulfur contents. PC-fired emissions on a normalized mass basis (mass SO3 per unit energy input) indicated higher SO3 emissions under air-fired conditions vs. oxy-firing, for both the Illinois and Utah coals.Circulating fluidized bed testing was also carried out using the low-sulfur Utah coal, and SO3 concentrations were notably higher for oxy-firing vs. air-firing, in contrast to the similar concentration levels observed for PC-firing. When compared on a normalized mass basis, the emissions were similar for both air- and oxy-firing, which is also in contrast to the PC-fired results for this coal.  相似文献   

15.
This study assesses potential environmental impacts of the absorption-based carbon dioxide (CO2) capture unit that is integrated to coal-fired power plant for post-combustion treatment of flue gas. The assessment was performed by identifying potential pollutants and their sources as well as amounts of emissions from the CO2 capture unit and also by reviewing toxicology, potential implications to human health and the environment, as well as the environmental laws and regulations associated with such pollutants. The assessment shows that, while offering a significant environmental benefit through a reduction of greenhouse gas emissions, the installation of CO2 capture units for post-combustion treatment might induce unintentional and potential burdens to human health and the environment through four emission pathways, including treated gas, process wastes, fugitive emissions, and accidental releases. Such burdens nevertheless can be predetermined and properly mitigated through a well-established environmental management program and mitigation measures. Recommendations to minimize these impacts are provided in this paper.  相似文献   

16.
Sustainable use of natural resources would entail ensuring that derived economic benefits today do not undermine the welfare of generations to come. On this basis, this study examines the nexus between natural resource rents and carbon dioxide (CO2) emissions disaggregated into production and consumption-based (i.e., trade-adjusted) CO2 emissions for a selected panel of 45 developing and transition economies over the period 1995–2017. The empirical model also incorporates the impacts of population, affluence, and energy intensity. The results show that affluence increases production-based CO2 emissions by 1.407%, with the EKC's predicted inverted U-shaped curve only explaining consumption-based CO2 emissions. Economic reliance on natural resource rents and energy intensification contribute 0.022% and 0.766%, respectively, to CO2 emissions embedded in territorial production inventories and 0.035% and 0.583%, respectively, to CO2 emissions embedded in consumption inventories. The bootstrap non-causality test shows that historical data on each variable has significant predictive power for future CO2 emissions from both sources. The historical information about natural resource rents has significant predictive power over the future levels of affluence and energy intensity. Clearly, the results show that the environmental impact of natural resource rents is stronger when CO2 emissions are adjusted for trade and varies among the countries, with Bangladesh, Guinea, India, Malaysia, Mexico, Nigeria, Pakistan, Saudi Arabia, Vietnam, and Zimbabwe among the most affected countries. Overall, this study provides motivation for policies to keep the use of natural resources within sustainable limits.  相似文献   

17.
Modeling of air pollutant dispersion has been undertaken for emissions of sulfur dioxide (SO2) at the Mina Al-Fahal refinery in the Sultanate of Oman. The study was conducted during the period of November 1999 to October 2000. The Industrial Source Complex Short-Term (ISCST32) air pollution model was adopted to predict the ground level concentration of SO2 in and around the refinery. The modeling results were validated against measured data during the study period. The comparison, based on the monthly average measurements, showed that the model underestimates the observed SO2 concentrations. However, the predicted ground level concentrations of SO2 during the months of September, October, November, and June were in better agreement with the observations. The predicted SO2 values are presented in the form of concentration contours to determine the spatial distribution of SO2 and to assess the impact on air quality over the survey area. Predicted SO2 concentrations were found lower than the World Health Organisation (WHO) guideline value of 365 μg/m3, with the maximum ground level concentrations being found to occur relatively close to the sources of emission. Moreover, concentration contour patterns for the modeled area vary with changes in meteorological conditions. On the basis of this study, the refinery is not likely to cause any significant deterioration in air quality, and predicted concentrations of SO2 are well below those likely to influence health.  相似文献   

18.
In this article, we analyzed the mass concentrations of particulate matter 2.5 micrometers (µm) or less in size (PM2.5), particulate matter 10 µm or less in size (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and ozone (O3) in Lanzhou, the capital of Gansu province, China. We analyzed monitoring data collected from five air quality monitoring stations during the spring–summer period from 2014 to 2016. Our comparison of contaminant concentrations and average diurnal, daily, monthly, and annual concentrations revealed that the average concentrations of PM2.5 and PM10 amounted to 128.57 and 46.4 micrograms per cubic meters (µg/m3), respectively, exceeding the Chinese National Ambient Air Quality Standard (NAAQS). We used the Pearson correlation coefficient to establish connections between particulate matter and gaseous pollutants. The results show significant differences in the concentration levels of airborne pollutants. The Pearson correlation coefficient between PM2.5 and PM10 had the highest coefficient of r = 0.842. A correlation between the two particulate matter sizes (PM2.5 and PM10) and SO2 was PM2.5 and SO2 r = 0.313; PM10 and SO2 r = 0.279; and CO and the two particulate matter sizes, PM2.5 and CO r = 0.304; and PM10 and CO r = 0.203. The average monthly ratio for the study months of PM2.5 to PM10 was 0.361. In addition, we used the hybrid single particle Lagrangian integrated trajectory model for tracking sources and pathways of the air pollutants in Lanzhou.  相似文献   

19.
The widespread use of fossil fuels within the current energy infrastructure is considered as the largest source of anthropogenic emissions of carbon dioxide, which is largely blamed for global warming and climate change. At the current state of development, the risks and costs of non-fossil energy alternatives, such as nuclear, biomass, solar, and wind energy, are so high that they cannot replace the entire share of fossil fuels in the near future timeframe. Additionally, any rapid change towards non-fossil energy sources, even if possible, would result in large disruptions to the existing energy supply infrastructure. As an alternative, the existing and new fossil fuel-based plants can be modified or designed to be either “capture” or “capture-ready” plants in order to reduce their emission intensity through the capture and permanent storage of carbon dioxide in geological formations. This would give the coal-fired power generation units the option to sustain their operations for longer time, while meeting the stringent environmental regulations on air pollutants and carbon emissions in years to come.Currently, there are three main approaches to capturing CO2 from the combustion of fossil fuels, namely, pre-combustion capture, post-combustion capture, and oxy-fuel combustion. Among these technology options, oxy-fuel combustion provides an elegant approach to CO2 capture. In this approach, by replacing air with oxygen in the combustion process, a CO2-rich flue gas stream is produced that can be readily compressed for pipeline transport and storage. In this paper, we propose a new approach that allows air to be partially used in the oxy-fired coal power plants. In this novel approach, the air can be used to carry the coal from the mills to the boiler (similar to the conventional air-fired coal power plants), while O2 is added to the secondary recycle flow as well as directly to the combustion zone (if needed). From a practical point of view, this approach eliminates problems with the primary recycle and also lessens concerns about the air leakage into the system. At the same time, it allows the boiler and its back-end piping to operate under slight suction; this avoids the potential danger to the plant operators and equipment due to possible exposure to hot combustion gases, CO2 and particulates. As well, by integrating oxy-fuel system components and optimizing the overall process over a wide range of operating conditions, an optimum or near-optimum design can be achieved that is both cost-effective and practical for large-scale implementation of oxy-fired coal power plants.  相似文献   

20.
This research utilizes real operating data from a tire plant operating in Central Taiwan to investigate the carbon footprint emissions (CO2e) involved in producing the electric bicycle. The simulation results are based on the PAS 2050 standard using the SimaPro 7.3 software tool. Our results show the total carbon footprint emissions of 1.2-kg tire for the electric bicycle weighing 4.53-kg CO2e, composed of 2.63-kg CO2e from raw tire materials stage, 1.295-kg CO2e from tire manufacturing stage, and 0.605-kg CO2e from tire transport stage. An international certified organization, British Standard Institute (BSI), verified the accuracy of our results as 98.7%. We found that carbon emissions at the raw materials stage were higher than that for the other two stages – manufacturing and transportation. Carbon black was determined as the maximum source of carbon emissions at the raw material stage. To reduce the tire plant carbon emissions, this paper recommends using graphene to replace carbon black. Graphene has been reported by many researches to improve the properties of rubber products. From our simulation results, the carbon footprint emissions of 4.56-kg CO2e of the origin tire plant uses 0.456-kg carbon black to produce 1.2-kg electric bicycle tires. This can be reduced to 4.29 (5.92%), 4.03 (11.62%), 3.75 (11.76%), and 3.49-kg CO2e (23.46%) by using graphene to replace carbon black 25, 50, 75, and 100 wt% respectively. If we focus only on 0.456-kg carbon black producing 1.08-kg CO2e, the reduced carbon footprint will be 0.812 (24.81%), 0.547 (49.35%), 0.28 (74.07%), and 0.0128-kg CO2e (98.81%) by using graphene to replace carbon black 25, 50, 75, and 100 wt% respectively. From our analysis, graphene replacing carbon black can reduce carbon footprint. This has not been published previously and provides a direction for the tire plant to save carbon emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号