首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
实验利用铁碳微电解对印染废水二级生化出水进行深度处理研究,结果表明,该工艺可使COD从120 mg/L降至60 mg/L以下,达到《城镇污水处理厂污染物排放标准》(GB 18918-2002)一级B排放标准。通过微生物生长曲线、乳酸脱氢酶(LDH)释放、活性氧物质(ROS)产生水平等检测手段,对比深度处理前后废水的生物毒性。结果表明:印染废水经深度处理后对大肠杆菌的生长抑制明显减弱;进水导致大肠杆菌的LDH释放量和ROS产生水平分别为空白的2.4和28.9倍,深度处理后分别下降至1.8和6.9倍;另外,毒性较大的双酚A和2,4-二氨基甲苯在深度处理过程被降解。可知,铁碳微电解具有毒性削减作用。然而,出水中含有的某些污染物使其仍表现出一定的生物毒性。  相似文献   

2.
采用铁炭微电解-Fenton联合工艺深度处理制药废水生化出水,探讨了初始pH、曝气量、反应时间等因素对微电解出水Fe2+和Fe3+变化规律、COD降解速率以及后续Fenton氧化效果的影响,为优化微电解-Fenton氧化联合工艺提出了微电解间歇加酸的理论。间歇加酸可提高微电解系统中COD降解速率和Fe2+含量,使后续Fenton氧化无需投加FeSO4·7H2O即可达到较好的COD去除效果。结果表明,当初始pH=2.5,曝气量为0.6 m3/h,间歇加酸30 min/次,微电解反应2 h,出水投加1 mL/L的H2O2进行Fenton氧化2 h,COD总去除率可达81.33%;间歇加酸30 min/次可将微电解反应2 h出水Fe2+浓度从50 mg/L提高至151 mg/L,COD降解速率从10.6 mg COD/(L·h)提高至22.2 mg COD/(L·h)。  相似文献   

3.
硫铁矿烧渣催化类Fenton法深度处理维生素C废水   总被引:1,自引:0,他引:1  
采用硫铁矿烧渣协同Fe2+催化H2O2的类Fenton法深度处理维生素C制药废水,通过正交实验考察FeSO4投加量、H2O2投加量、搅拌反应时间、曝气时间等因素对低浓度难降解有机物去除的影响程度,并结合单因素实验确定最佳反应条件。结果表明:(1)正交实验中,各因素对催化氧化反应效果的影响程度依次为H2O2投加量搅拌反应时间曝气时间FeSO4投加量;(2)单因素实验中,最佳反应条件为烧渣投加量10g/L、H2O2投加量4.9mmol/L、FeSO4投加量3.9mmol/L、搅拌反应时间20min、曝气时间20min、絮凝沉淀部分聚丙烯酰胺(PAM)投加量5mg/L。在此条件下,COD去除率最高达63.21%。  相似文献   

4.
铁碳微电解预处理汽车电泳涂装废水   总被引:2,自引:0,他引:2  
采用铁碳微电解法对汽车电泳涂装废水进行处理,研究其处理效果及COD降解动力学。结果表明,进水pH≤4时,铁碳微电解的处理效果影响因素依次为铁碳反应次数、反应时间、进水pH。COD降解率随微电解反应时间的增加而升高,随反应次数的增加而降低,之后趋向稳定。当进水pH=3,反应时间90~150 min时,铁碳微电解的处理效果可稳定在40%左右。同时通过模拟分析,汽车电泳涂装废水COD降解动力学符合三级反应动力学模型。  相似文献   

5.
黄挺  张光明  张楠  种珊  刘毓璨  朱佳 《环境工程学报》2017,11(11):5892-5896
以零价铁作为类芬顿反应中的催化剂,对某制药集团经生化处理后的制药废水进行深度处理。研究了H2O2和零价铁粉投加量、pH值以及Fe0的酸改性对处理效果的影响。结果表明:COD去除率20%时,可有效提高废水B/C比。在pH为3.0~3.5时,按H2O2:COD质量比为1:6进行投加,Fe0与H2O2按4:1的摩尔比投加,反应在2 h时能达到处理目标,即去除20%的COD。Fe0的重复使用性良好,5次后仍能保持催化效能,进一步对其中的反应过程与机理做了探讨。研究结果可为制药废水的深度处理提供参考。  相似文献   

6.
通过采用铁碳微电解预处理丙烯酸废水的实验研究,分析了物理吸附、进水pH、反应时间和固液比(填料废水比)这4个因素对COD和甲醛去除率的影响规律,同时研究了铁碳微电解结合两相UASB处理丙烯酸废水的技术优势。单因素实验的结果表明,当pH=3.0、反应时间=4 h、固液比=300 g:200 mL时,铁碳微电解预处理可取得37%的COD去除率和30%的甲醛去除率,而且废水可生化性得到明显的改善,与单独两相UASB相比,预处理可显著提高两相UASB运行的稳定性和高效性,综合处理后出水COD达到《污水综合排放标准(GB 8978-1996)》二级排放标准;出水甲醛浓度降低至13~20 mg/L。  相似文献   

7.
采用铁碳微电解法对实验室有机废水进行小型处理实验,研究该方法的废水净化特性,并优化进水pH值、水力停留时间(HRT)和曝气量等主要运行工艺参数。通过正交实验得到最佳处理条件pH值为5,水力停留时间为6 h,曝气量为12 L·h-1。以实际最佳条件运行反应器,废水COD去除率可达到85%,废水中芳香族化合物等难降解物质得到降解,BOD5/COD由0.1提高到0.4以上,出水可生化性大幅提高。研究表明,铁碳微电解法适于处理实验室难降解有机废水,估算处理成本约为9.84元·m-3废水。  相似文献   

8.
为减少农村生活污水中有机物对河流水体的污染,以现有农村污水分散处理的一级出水为进水,研究了传统植物浮床、铁碳微电解和常规生物填料的耦合工艺对农村污水的处理效果。该耦合工艺应用物化反应、生物反应、化学反应为共生关系,建立人工生态系统,用以削减水体中的污染负荷。结果表明:微生物耦合铁碳微电解强化浮床在冬季对COD、TP、${{\rm{NH}}_4^ +} $-N和TN的去除率分别可达到78.6%、78.2%、72.2%和73.3%,在夏季的去除率分别可以达到88.8%、75.6%、78.1%和80%;在冬季和夏季的耦合强化浮床中COD的降解速率分别达到2.933 mg·(L·d)−1和3.529 mg·(L·d)−1,TP的降解速率分别为0.055 mg·(L·d)−1和0.061 mg·(L·d)−1,${{\rm{NH}}_4^ +} $-N的降解速率分别为0.583 mg·(L·d)−1和0.8 mg·(L·d)−1,TN的降解速率分别为0.73 mg·(L·d)−1和1.114 mg·(L·d)−1,均优于传统植物浮床与微生物强化浮床的作用效果;微生物耦合铁碳微电解强化浮床对植物的促生长作用明显强于传统浮床和微生物强化浮床,冬季实验前后植物增重为23.3 g,夏季植物增重达到67.4 g;耦合浮床中微生物活性是微生物强化浮床中的1.81倍和1.45倍;最后利用因子的相关性分析与主成分分析,结果进一步表明,由于微生物与铁碳微电解的协同作用促使微生物数量与活性的提升,进而对污染物去除效果产生重要影响。以上研究结果可为农村生活污水的深度处理提供技术支持。  相似文献   

9.
采用铁碳微电解/H_2O_2耦合类Fenton法预处理高浓度焦化废水,通过正交和单因素实验研究了废水初始pH、不同质量的微电解填料、H_2O_2投加量及反应时间对COD处理效果的影响,同时研究了COD降解动力学。结果表明:最佳控制条件是废水初始pH为3、铁碳填料投加量为300 g/L、H_2O_2投加量为80 m L/L、反应时间为160 min,此时COD的去除率达到87%以上;H_2O_2的加入可使铁碳微电解/H_2O_2系统COD的去除率提高37.34%,铁碳微电解/H_2O_2系统COD反应动力学方程为y=0.5296x-0.6218,相关系数R~2为0.9917。  相似文献   

10.
微电解反应器应用于印染废水深度处理的小试研究   总被引:1,自引:0,他引:1  
利用铁炭微电解反应器对印染废水的深度处理进行了实验研究,检验了微电解设备的性能,确定了其设备的最大负荷、反冲洗周期以及填料更换的周期,并对曝气影响反应器运行的状况进行了研究。该工艺对COD的去除率均达到70%以上,色度去除率为99%,盐度达1000mg/L以下,硬度达220mg/L以下,出水水质达到印染废水的回用水质标准。  相似文献   

11.
采用铁炭微电解法深度处理燃料乙醇生产废水,考察了初始pH、水力停留时间、铁炭质量比和曝气量对废水处理效果的影响,并对该技术应用于燃料乙醇废水深度处理的经济性进行了评价。结果表明,在初始pH值3.5、水力停留时间40 min、铁炭质量比2∶1、曝气量为1 m3/h时,获得了较好的处理效果,废水经处理后,COD均值为37.8 mg/L,BOD5为13.9 mg/L,色度为10.1倍,浊度为1.2 NTU,达到工业用水回用的标准(GB/T 19923-2005)。将此工艺应用于燃料乙醇生产废水的处理,处理费用约为1.46元/t,具有较好的社会、经济和环保效益。  相似文献   

12.
铁炭微电解预处理高浓度高盐制药废水   总被引:2,自引:1,他引:2  
采用铁炭微电解法预处理高浓度高盐制药废水,并对反应条件、处理效果、反应动力学和机理进行研究。通过单因素实验初步研究进水pH、铁用量、反应时间和铁炭比对处理效果的影响;通过正交实验表明进水pH对处理效果影响最大,并得到最佳反应条件为:进水pH为4.5,铁投加量40 g/L,铁炭质量比1∶1,反应时间4 h,COD去除率可达40%以上,并可以提高废水的可生化性,后续通过厌氧生物处理出水可达二级污水综合排放标准。通过对各级反应动力学方程进行回归分析,表明微电解处理制药废水基本遵循一级反应动力学。铁炭微电解处理制药废水效果好,并可以提高可生化性,同时具有操作简单和成本低的优点,为制药废水的预处理提供新的途径。  相似文献   

13.
Fenton氧化与铁炭微电解组合预处理DMF废水   总被引:1,自引:0,他引:1  
对COD表征模拟废水中DMF去除率的可行性进行了探讨。在此基础上,分别对铁炭微电解、Fenton氧化-铁炭微电解和铁炭微电解-Fenton氧化组合工艺对DMF废水的处理效果进行分析,结果表明,Fenton氧化-铁炭微电解工艺的处理效果较好。在pH=5,反应时间为1 h,FeSO4·7H2O投加量为1 000 mg/L、H2O2投加量为2.67 mL/L和不曝气的最佳反应条件下,Fenton氧化-铁炭微电解工艺对实际废水和废液中COD的去除率分别达到66.67%和72.22%,从而验证了该工艺处理DMF废水的可行性。此外,Fenton氧化处理DMF废水过程实际上是将酰胺基团和羰基的不饱和双键氧化分解的过程。  相似文献   

14.
铁碳微电解-Fenton法预处理苯胺基乙腈生产废水   总被引:1,自引:0,他引:1  
采用铁碳微电解-Fenton法对苯胺基乙腈生产废水进行预处理实验。通过静态实验确定铁碳微电解最佳条件为铁屑投加量300 g/L,Fe/C质量比为2∶3,反应75 min,不需要调节进水pH;Fenton反应最佳条件为铁碳微电解出水pH=4,30%H2O2投加量15 mL/L,在搅拌条件下反应60 min;然后沉淀反应时调节pH为9,混凝沉淀75 min。在上述条件下通过动态实验得到系统连续反应在48 h内废水的COD和苯胺去除率在50%和70%以上,可生化性BOD5/COD也保持在0.3以上,为后续生物处理创造了良好条件。  相似文献   

15.
铁炭微电解-Fenton试剂法预处理半焦废水   总被引:2,自引:0,他引:2  
采用铁炭微电解/Fenton试剂法对半焦废水进行预处理,探索材料粒径、铁炭比、废水pH、H2O2用量以及反应时间对处理效果的影响。结果表明,在铁屑粒径为5~7mm,活性炭粒径为2~3mm,铁炭体积比为1:1,微电解反应90min,进水pH为8.0~9.0,H2O2投加量为4mL/L,Fenton试剂反应90min的条件下,半焦废水COD去除率可达55%以上,B/C由处理前的0.24提高到0.43,可生化性能良好,铁炭微电解/Fenton试剂法可作为半焦废水一种有效的预处理方式。  相似文献   

16.
臭氧催化氧化-BAF组合工艺深度处理抗生素制药废水   总被引:1,自引:0,他引:1  
针对抗生素制药废水组分复杂、毒性强、难生物降解的特点,以Ce负载天然沸石作为催化剂(Ce/NZ),采用臭氧催化氧化-曝气生物滤池(BAF)组合工艺对抗生素制药废水二级生化处理出水进行深度处理。结果表明,Ce/NZ催化剂可显著改善臭氧预处理单元的处理效率,在臭氧进气浓度为50 mg·L−1、臭氧进气量为600 mL·min−1、催化剂用量为1 g·L−1、臭氧反应时间为120 min的条件下,臭氧催化氧化预处理对抗生素制药废水的COD去除率达到43%,平均COD由220 mg·L−1降至125 mg·L−1,BOD5/COD由0.12升至0.28,废水的可生化性得到显著提高。臭氧预处理单元出水采用BAF进行生化处理,在进水平均COD为125 mg·L−1、平均NH4+-N为12 mg·L−1、水力停留时间为4 h、气水比为4∶1的条件下,COD和NH4+-N的平均去除率分别为62%和64%。组合工艺处理后出水平均COD和NH4+-N分别为46 mg·L−1和4.1 mg·L−1,出水水质可以稳定达到《发酵类制药工业水污染物排放标准》(GB 21903-2008)。相较于单独BAF工艺,组合工艺出水COD和NH4+-N平均去除率分别提高了66%和15%,出水水质明显优于单独BAF工艺出水。  相似文献   

17.
以某油井钻井废水经高效混凝+吸附过滤处理后的出水为研究对象,采用Fe/Cu/C微电解对钻井废水进行深度处理研究。结果表明,Fe/Cu/C微电解的最佳工艺条件为:Fe/Cu/C质量比为7:3:10,Fe/Cu/C投加量为1 000 g/L,pH为3.0,气水比为54:1,反应时间为180 min;Fe/Cu/C微电解对钻井废水深度处理的效能十分显著,在最佳工艺条件下,废水COD质量浓度由428.63 mg/L降至98.32 mg/L,COD去除率达到77.06%。  相似文献   

18.
铁炭微电解-H2O2法降解二甲基甲酰胺废水   总被引:2,自引:0,他引:2  
采用铁炭微电解-H2O2法降解二甲基甲酰胺(DMF)废水,探讨了反应时间、pH、铁炭质量比(简写为Fe/C)以及H2O2投加量对DMF去除率的影响.结果表明:(1)当反应时间为60 min、pH为3、Fe/C为3:1时,DMF去除率为73.4%.(2)向反应体系中投加H2O2,DMF去除率明显提高.当H2O2投放量为0.20 mL/L时,DMF去除率达到95.2%.  相似文献   

19.
通过构建铁炭微电解与微生物共作用预处理体系,以处理酚醛废水.分别考察了体系中COD、苯酚和甲醛的去除率.结果 表明:相较于单独的铁炭微电解或微生物处理体系,铁炭微电解与微生物的协同作用促进了苯酚和甲醛的降解,铁碳填料最佳投加量为1 400 g·L-1,污泥最佳接种量为10%;当进水COD为12 000mg·L-1、苯酚...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号