首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Goswami VR  Getz LL  Hostetler JA  Ozgul A  Oli MK 《Ecology》2011,92(8):1680-1690
Although ecologists have long recognized that certain mammalian species exhibit high-amplitude, often multiannual, fluctuations in abundance, their causes have remained poorly understood and the subject of intense debate. A key contention has been the relative role of density-dependent and density-independent processes in governing population dynamics. We applied capture-mark-recapture analysis to 25 years of monthly trapping data from a fluctuating prairie vole Microtus ochrogaster population in Illinois, USA, to estimate realized population growth rates and associated vital rates (survival and recruitment) and modeled them as a function of vole density and density-independent climatic variation. We also tested for phase dependence and seasonality in the effects of the above processes. Variation in the realized population growth rate was best explained by phase-specific changes in vole density lagged by one month and mean monthly temperatures with no time lags. The underlying vital rates, survival and recruitment, were influenced by the additive and interactive effects of phase, vole density, and mean monthly temperatures. Our results are consistent with the observation that large-scale population fluctuations are characterized by phase-specific changes in demographic and physiological characteristics. Our findings also support the growing realization that the interaction between climatic variables and density-dependent factors may be a widespread phenomenon, and they suggest that the direction and magnitude of such interactive effects may be phase specific. We conclude that density-dependent and density-independent climatic variables work in tandem during each phase of density fluctuations to drive the dynamics of fluctuating populations.  相似文献   

2.
The effects of intraspecific density on life history traits and population dynamics of the nereid polychaete Neanthes arenaceodentata Moore were assessed in a laboratory experiment. Survival, growth, and fecundity were measured for one generation of worms at densities of 40, 80 and 160 worms per 840 cm2 (1x, 2x, and 4x treatments, respectively). Density did not affect size (prior to pairing), percentage of worms paired, time to pairing, or size of mature paired males. Density did have a significant negative effect on survival, size of mature paired females, time to spawning, percentage of females that reproduced, and number of eggs per reproducing female. As density increased, mean survival was 90.0, 80.8 and 74.0%; mean size of mature females was 52.2, 49.2 and 48.1 segments; mean time to spawning was 100.6, 102.4 and 109.4 d; and mean fecundity was 881, 622, and 598 eggs per female, for 1x, 2x and 4x treatments, respectively. Increased density reduced the potential population growth rate, ; for a given rate of larval survivorship, was lower in the 2x and 4x treatments than the 1x treatment. Analysis of sensitivity of to changes in survivorship indicated that population growth rate at the highest density was sensitive to both changes in larval survivorship and the probability of producing a successful brood, although at low densities, was sensitive only to changes in larval survivorship. We attribute these density effects to aggressive bahavioral interactions between the worms, primarily the adults. This experiment identifies key life history traits that could be measured in future experiments to test population level responses of N. arenaceodentata populations to pollutants, both in the laboratory and in the field.Contribution No. 820 of the U.S. Environmental Protection Agency, Environmental Research Laboratory and Contribution No. 189 of the Marine Sciences Institute, University of Connecticut  相似文献   

3.
Nonlinear and irregular population dynamics may arise as a result of phase dependence and coexistence of multiple attractors. Here we explore effects of climate and density in the dynamics of a highly fluctuating population of wild reindeer (Rangifer tarandus platyrhynchus) on Svalbard observed over a period of 29 years. Time series analyses revealed that density dependence and the effects of local climate (measured as the degree of ablation [melting] of snow during winter) on numbers were both highly nonlinear: direct negative density dependence was found when the population was growing (Rt > 0) and during phases of the North Atlantic Oscillation (NAO) characterized by winters with generally high (1979-1995) and low (1996-2007) indices, respectively. A growth-phase-dependent model explained the dynamics of the population best and revealed the influence of density-independent processes on numbers that a linear autoregressive model missed altogether. In particular, the abundance of reindeer was enhanced by ablation during phases of growth (Rt > 0), an observation that contrasts with the view that periods of mild weather in winter are normally deleterious for reindeer owing to icing of the snowpack. Analyses of vital rates corroborated the nonlinearity described in the population time series and showed that both starvation mortality in winter and fecundity were nonlinearly related to fluctuations in density and the level of ablation. The erratic pattern of growth of the population of reindeer in Adventdalen seems, therefore, to result from a combination of the effects of nonlinear density dependence, strong density-dependent mortality, and variable density independence related to ablation in winter.  相似文献   

4.
Price MV  Campbell DR  Waser NM  Brody AK 《Ecology》2008,89(6):1596-1604
Despite extensive study of pollination and plant reproduction on the one hand, and of plant demography on the other, we know remarkably little about links between seed production in successive generations, and hence about long-term population consequences of variation in pollination success. We bridged this "generation gap" in Ipomopsis aggregata, a long-lived semelparous wildflower that is pollinator limited, by adding varying densities of seeds to natural populations and following resulting plants through their entire life histories. To determine whether pollen limitation of seed production constrains rate of population growth in this species, we sowed seeds into replicated plots at a density that mimics typical pollination success and spacing of flowering plants in nature, and at twice that density to mimic full pollination. Per capita offspring survival, flower production, and contribution to population increase (lambda) did not decline with sowing density in this experiment, suggesting that typical I. aggregata populations freed from pollen limitation will grow over the short term. In a second experiment we addressed whether density dependence would eventually erase the growth benefits of full pollination, by sowing a 10-fold range of seed densities that falls within extremes estimated for the natural "seed rain" that reaches the soil surface. Per capita survival to flowering and age at flowering were again unaffected by sowing density, but offspring size, per capita flower production, and lambda declined with density. Such density dependence complicates efforts to predict population dynamics over the longer term, because it changes components of the life history (in this case fecundity) as a population grows. A complete understanding of how constraints on seed production affect long-term population growth will hinge on following offspring fates at least through flowering of the first offspring generation, and doing so for a realistic range of population densities.  相似文献   

5.
Vermeij MJ  Sandin SA 《Ecology》2008,89(7):1994-2004
The local densities of heterospecifics and conspecifics are known to have profound effects on the dynamics of many benthic species, including rates of settlement and early post-settlement survivorship. We described the early life history of the Caribbean coral, Siderastrea radians by tracking the population dynamics from recently settled planulae to juveniles. Through three years of observation, settlement correlated with the abundance of other benthic organisms, principally turf algae (negatively) and crustose coralline algae (positively). In addition, adult density showed independent effects on coral settlement and early post-settlement survivorship. Settlement rates increased across low levels of adult cover and saturated at a maximum around 10% cover. Early post-settlement survivorship decreased with adult cover, revealing structuring density dependence in coral settlers. The earliest life stages of corals are defined by low survivorship, with survivorship increasing appreciably with colony size. However, recent settlers (one-polyp individuals, < 1-year-old) are more likely to grow into two-polyp juveniles than older single polyps (> 1-year-old) that were delayed in their development. The early benthic phase of corals is defined by a severe demographic bottleneck for S. radians, with appreciable density-dependent and density-independent effects on survivorship. For effective management and restoration of globally imperiled coral reefs, we must focus more attention on this little studied, but dynamic, early life history period of corals.  相似文献   

6.
Pachepsky E  Nisbet RM  Murdoch WW 《Ecology》2008,89(1):280-288
In many consumer-resource systems the consumer population has synchronized reproduction at regular intervals (e.g., years) but consumes the resource and dies continuously, while the resource population grows continuously or has overlapping generations that are short relative to the time between consumer reproductive events. Such systems require "semi-discrete" models that have both discrete and continuous components. This paper defines and analyzes a canonical, semi-discrete model for a widespread class of consumer-resource interactions in which the consumer is a discrete breeder and the resource reproduction can be described continuously. The model is the analog of the Nicholson-Bailey and Lotka-Volterra models for discrete and continuous systems, respectively. It thereby develops the basis for understanding more realistic, and hence more complex, semi-discrete models. The model can display stable equilibria, consumer-resource cycles, and single-species-like overcompensation cycles. Cycles are induced by high maximum fecundity in the consumer. If the resource grows rapidly and the consumer has high maximum fecundity, the model reduces to a single-species discrete-time model of the consumer, which can exhibit overcompensation cycles. By contrast, such cycles in discrete consumer-resource models typically occur only in the resource once the consumer is extinct. Also unlike a common class of discrete models that do not display consumer-resource cycles with periods below four years, semi-discrete models can exhibit consumer-resource cycles with periods as short as two years.  相似文献   

7.
Abstract: Effective conservation metrics are needed to evaluate the success of management in a rapidly changing world. Reproductive rates and densities of breeding birds (as a surrogate for reproductive rate) have been used to indicate the quality of avian breeding habitat, but the underlying assumptions of these metrics rarely have been examined. When birds are attracted to breeding areas in part by the presence of conspecifics and when breeding in groups influences predation rates, the effectiveness of density and reproductive rate as indicators of habitat quality is reduced. It is beneficial to clearly distinguish between individual‐ and population‐level processes when evaluating habitat quality. We use the term reproductive rate to refer to both levels and further distinguish among levels by using the terms per capita fecundity (number of female offspring per female per year, individual level) and population growth rate (the product of density and per capita fecundity, population level). We predicted how density and reproductive rate interact over time under density‐independent and density‐dependent scenarios, assuming the ideal free distribution model of how birds settle in breeding habitats. We predicted population density of small populations would be correlated positively with both per capita fecundity and population growth rate due to the Allee effect. For populations in the density‐dependent growth phase, we predicted no relation between density and per capita fecundity (because individuals in all patches will equilibrate to the same success rate) and a positive relation between density and population growth rate. Several ecological theories collectively suggest that positive correlations between density and per capita fecundity would be difficult to detect. We constructed a decision tree to guide interpretation of positive, neutral, nonlinear, and negative relations between density and reproductive rates at individual and population levels.  相似文献   

8.
White JW  Caselle JE 《Ecology》2008,89(5):1323-1333
While there is great interest in the degree to which local interactions "scale-up" to predict regional patterns of abundance, few studies in marine systems have simultaneously examined patterns of abundance at both the large scale (tens of kilometers) typical of larval movement and the small scale (meters) typical of post-settlement interactions. We addressed this gap by monitoring larval supply, adult survivorship, and giant kelp (Macrocystis pyrifera, a primary habitat-forming species) abundance for 13 populations of kelp bass (Paralabrax clathratus) spread over approximately 200 km in the Santa Barbara Channel, California, USA. At the small, within-site scale, both recruitment and adult survivorship of kelp bass were density-dependent and positively related to kelp abundance. At the larger, among-site scale, the spatial pattern of adult kelp bass abundance was predicted well by the pattern of kelp bass larval supply, but there was a consistent negative spatial relationship between kelp abundance and kelp bass larval supply despite the positive effects of kelp on kelp bass at the smaller spatial scale. This large-scale negative relationship was likely a product of a channel-wide spatial mismatch between oceanographic conditions that favor kelp survival and those that concentrate and distribute fish larvae. These results generally support the recruit-adult hypothesis: kelp bass populations are limited by recruitment at low recruit densities but by density-dependent competition for food resources and/or predator refuges at high recruit densities. At the same time, spatial variation in kelp abundance produced substantial spatiotemporal heterogeneity in kelp bass demographics, which argues for a multispecies, metacommunity approach to predicting kelp bass dynamics.  相似文献   

9.
Bottom-up effects of plant genotype on aphids, ants, and predators   总被引:1,自引:0,他引:1  
Johnson MT 《Ecology》2008,89(1):145-154
Theory predicts that bottom-up ecological forces can affect community dynamics, but whether this extends to the effects of heritable plant variation on tritrophic communities is poorly understood. In a field experiment, I contrasted the effects of plant genotype (28 genotypes; 1064 plants), aphid density, and the presence/absence of mutualistic ants in affecting the per capita population growth of a specialist aphid herbivore, as well as the effects of plant genotype on the third trophic level. Plant genotype strongly affected aphid population growth rate, explaining 29% of the total variation in growth rate, whereas aphid density and ant-aphid interactions explained substantially less variation (< 2%) in aphid population growth rate. Plant genotype also had direct and indirect effects on the third trophic level, affecting the abundance of aphid-tending ants and the richness of predators. Multiple regression identified several heritable plant traits that explained 49% of the variation in aphid growth rate and 30% of the variation in ant abundance among plant genotypes. These bottom-up effects of plant genotype on tritrophic interactions were independent of the effects of either initial aphid density or the presence/absence of mutualistic ants. This study shows that plant genotype can be one of the most important ecological factors shaping tritrophic communities.  相似文献   

10.
Effective conservation of endangered species often is hampered by inadequate knowledge of demography. We extracted information on survival and fecundity from an 18-month, live-trapping study of Dipodomys stephensi , and from this we developed an age-structured demographic model to assess population viability. Adult Stephens' kangaroo rats persisted longer than juveniles, and adult females persisted longer than adult males. Disappearance rates were high in the first months after initial capture. Thereafter, the fraction of animals persisting decreased slowly and in an approximately linear fashion on a semilogarithmic scale, suggesting age-independent mortality factors such as predation. Juvenile persistence did not differ substantially between two years of strikingly different rainfall. Onset of breeding followed the start of winter rains. Length of the breeding season, average number of litters per female, and the fraction of first-year females breeding were much greater in the year of higher rainfall. We propose a birth-pulse demographic model for D. stephensi that distinguishes juvenile and adult age classes. Temporal environmental variation can be modeled adequately with a constant survivorship schedule and variable fecundity determined by yearly precipitation. Several issues should be resolved, however, before conservation decisions are based on the model. Better estimates of juvenile survivorship are critical, the quantitative relationship between precipitation and fecundity must be determined, and the potential for density dependence and source-sink population dynamics must be evaluated.  相似文献   

11.
Recruitment variability caused by density-dependent and density-independent processes is an important area within the study of fish dynamics. These processes can exhibit nonlinearities and nonadditive properties that may have profound dynamic effects. We investigate the importance of population density (i.e., density dependence) and environmental forcing (i.e., density independence) on the age-0 and age-1 abundance of capelin (Mallotus villosus), northeast Arctic cod (Gadus morhua), northeast Arctic haddock (Melanogrammus aeglefinus), and Norwegian spring spawning herring (Clupea harengus) in the Barents Sea. We use statistical methods that explicitly account for nonlinearities and nonadditive interactions between internal and external variables in the abundance of these two pre-recruitment stages. Our results indicate that, during their first five months of life, cod, haddock, and herring experience higher density-dependent survival than capelin. The abundance of age-0 cod depends on the mean age and biomass of the spawning stock, a result which has implications for the management of the entire cod stock. Temperature is another important factor influencing the abundance at age-0 and age-1 of all four species, except herring at age-1. Between age-0 and age-1, there is an attenuation of density-dependent survival for cod and herring, while haddock and capelin experience density dependence at high and low temperatures, respectively. Predation by subadult cod is important for both capelin and cod at age-1. We found strong indications for interactions among the studied species, pointing to the importance of viewing the problem of species recruitment variability as a community, rather than as a population phenomenon.  相似文献   

12.
Irruptive population dynamics appear to be widespread in large herbivore populations, but there are few empirical examples from long time series with small measurement error and minimal harvests. We analyzed an 89-year time series of counts and known removals for pronghorn (Antilocapra americana) in Yellowstone National Park of the western United States during 1918-2006 using a suite of density-dependent, density-independent, and irruptive models to determine if the population exhibited irruptive dynamics. Information-theoretic model comparison techniques strongly supported irruptive population dynamics (Leopold model) and density dependence during 1918-1946, with the growth rate slowing after counts exceeded 600 animals. Concerns about sagebrush (Artemisia spp.) degradation led to removals of >1100 pronghorn during 1947-1966, and counts decreased from approximately 700 to 150. The best models for this period (Gompertz, Ricker) suggested that culls replaced intrinsic density-dependent mechanisms. Contrary to expectations, the population did not exhibit enhanced demographic vigor soon after the termination of the harvest program, with counts remaining between 100 and 190 animals during 1967 1981. However, the population irrupted (Caughley model with a one-year lag) to a peak abundance of approximately 600 pronghorn during 1982-1991, with a slowing in growth rate as counts exceeded 500. Numbers crashed to 235 pronghorn during 1992-1995, perhaps because important food resources (e.g., sagebrush) on the winter range were severely diminished by high densities of browsing elk, mule deer, and pronghorn. Pronghorn numbers remained relatively constant during 1996-2006, at a level (196-235) lower than peak abundance, but higher than numbers following the release from culling. The dynamics of this population supported the paradigm that irruption is a fundamental pattern of growth in many populations of large herbivores with high fecundity and delayed density-dependent effects on recruitment when forage and weather conditions become favorable after range expansion or release from harvesting. Incorporating known removals into population models that can describe a wide range of dynamics can greatly improve our interpretation of observed dynamics in intensively managed populations.  相似文献   

13.
Johnson DW 《Ecology》2007,88(7):1716-1725
For species that have an open population structure, local population size may be strongly influenced by a combination of propagule supply and post-settlement survival. While it is widely recognized that supply of larvae (or recruits) is variable and that variable recruitment may affect the relative contribution of pre- and post-settlement factors, less effort has been made to quantify how variation in the strength of post-settlement mortality (particularly density-dependent mortality) will affect the importance of processes that determine population size. In this study, I examined the effects of habitat complexity on mortality of blue rockfish (Sebastes mystinus) within nearshore reefs off central California. I first tested whether variation in habitat complexity (measured as three-dimensional complexity of rocky substrate) affected the magnitude of both density-independent and density-dependent mortality. I then used limitation analysis to quantify how variation in habitat complexity alters the relative influence of recruitment, density-independent mortality, and density-dependent mortality in determining local population size. Increased habitat complexity was associated with a reduction in both density-independent and density-dependent mortality. At low levels of habitat complexity, limitation analysis revealed that mortality was strong and recruitment had relatively little influence on population size. However, as habitat complexity increased, recruitment became more important. At the highest levels of habitat complexity, limitation by recruitment was substantial, although density-dependent mortality was ultimately the largest constraint on population size. In high-complexity habitats, population dynamics may strongly reflect variation in recruitment even though fluctuations may be dampened by density-dependent mortality. By affecting both density-independent and density-dependent mortality, variation in habitat complexity may result in qualitative changes in the dynamics of populations. These findings suggest that the relative importance of pre- vs. post-settlement factors may be determined by quantifiable habitat features, rather than ambient recruitment level alone. Because the magnitude of recruitment fluctuations can affect species coexistence and the persistence of populations, habitat-driven changes in population dynamics may have important consequences for both community structure and population viability.  相似文献   

14.
The relative scarcity of studies at the intersection of behavioral and population ecology is surprising given the presumed importance of behavior in density-dependent population regulation. Here we tested whether North American red squirrels (Tamiasciurus hudsonicus) adjust their behavior in response to local population density and whether they use rates of territorial vocalizations in their local neighborhood to assess density. We examined these relationships using 18?years of live trapping and 20?years of behavioral data that were collected across natural variation in local population density. To disentangle the effects of population density on behavior from those due to changes in per capita food abundance or changes in the frequency of antagonistic interactions with neighbors, we also experimentally manipulated population density with long-term food supplementation as well as perceived population density with long-term playbacks of territorial vocalizations. The frequency with which squirrels emitted territorial vocalizations was positively associated with local population density. In contrast, antagonistic physical interactions observed between squirrels and territorial intrusions were rare and the frequency of intrusions was weakly and negatively, not positively, associated with population density. Squirrels experiencing naturally and experimentally high density conditions spent less time in the nest and feeding but more time being vigilant. Similar density-dependent changes in behavior were observed in response to our manipulations of perceived population density, indicating that vocalization rates and not physical interactions or food abundance were the mechanism by which squirrels assessed and responded behaviorally to changes in local density.  相似文献   

15.
Two contrasting approaches to the analysis of population dynamics are currently popular: demographic approaches where the associations between demographic rates and statistics summarizing the population dynamics are identified; and time series approaches where the associations between population dynamics, population density, and environmental covariates are investigated. In this paper, we develop an approach to combine these methods and apply it to detailed data from Soay sheep (Ovis aries). We examine how density dependence and climate contribute to fluctuations in population size via age- and sex-specific demographic rates, and how fluctuations in demographic structure influence population dynamics. Density dependence contributes most, followed by climatic variation, age structure fluctuations and interactions between density and climate. We then simplify the density-dependent, stochastic, age-structured demographic model and derive a new phenomenological time series which captures the dynamics better than previously selected functions. The simple method we develop has potential to provide substantial insight into the relative contributions of population and individual-level processes to the dynamics of populations in stochastic environments.  相似文献   

16.
Chamberlain SA  Holland JN 《Ecology》2008,89(5):1364-1374
Interspecific interactions are often mediated by the interplay between resource supply and consumer density. The supply of a resource and a consumer's density response to it may in turn yield context-dependent use of other resources. Such consumer-resource interactions occur not only for predator-prey and competitive interactions, but for mutualistic ones as well. For example, consumer-resource interactions between ants and extrafloral nectar (EFN) plants are often mutualistic, as EFN resources attract and reward ants which protect plants from herbivory. Yet, ants also commonly exploit floral resources, leading to antagonistic consumer-resource interactions by disrupting pollination and plant reproduction. EFN resources associated with mutualistic ant-plant interactions may also mediate antagonistic ant-flower interactions through the aggregative density response of ants on plants, which could either exacerbate ant-flower interactions or alternatively satiate and distract ants from floral resources. In this study, we examined how EFN resources mediate the density response of ants on senita cacti in the Sonoran Desert and their context-dependent use of floral resources. Removal of EFN resources reduced the aggregative density of ants on plants, both on hourly and daily time scales. Yet, the increased aggregative ant density on plants with EFN resources decreased rather than increased ant use of floral resources, including contacts with and time spent in flowers. Behavioral assays showed no confounding effect of floral deterrents on ant-flower interactions. Thus, ant use of floral resources depends on the supply of EFN resources, which mediates the potential for both mutualistic and antagonistic interactions by increasing the aggregative density of ants protecting plants, while concurrently distracting ants from floral resources. Nevertheless, only certain years and populations of study showed an increase in plant reproduction through herbivore protection or ant distraction from floral resources. Despite pronounced effects of EFN resources mediating the aggregative density of ants on plants and their context-dependent use of floral resources, consumer-resource interactions remained largely commensalistic.  相似文献   

17.
Ness JH  Morris WF  Bronstein JL 《Ecology》2006,87(4):912-921
Generalized, facultative mutualisms are often characterized by great variation in the benefits provided by different partner species. This variation may be due to differences among species in the quality and quantity of their interactions, as well as their phenology. Many plant species produce extrafloral nectar, a carbohydrate-rich resource, to attract ant species that can act as "bodyguards" against a plant's natural enemies. Here, we explore differences in the quality and quantity of protective service that ants can provide a plant by contrasting the four most common ant visitors to Ferocactus wislizeni, an extrafloral nectary-bearing cactus in southern Arizona. The four species differ in abundance when tending plants, and in the frequency at which they visit plants. By adding surrogate herbivores (Manduca sexta caterpillars) to plants, we demonstrate that all four species recruit to and attack potential herbivores. However, their per capita effectiveness in deterring herbivores (measured as the inverse of the number of workers needed to remove half of the experimentally added caterpillars) differs. Using these among-species differences in quality (per capita effectiveness) and quantity (number of workers that visit a plant and frequency of visitation), we accurately predicted the variation in fruit production among plants with different histories of ant tending. We found that plant benefits (herbivore removal and maturation of buds and fruits) typically saturated at high levels of ant protection, although plants could be "well defended" via different combinations of interaction frequency, numbers of ant workers per interaction, and per capita effects. Our study documents variation among prospective mutualists, distinguishes the components of this variation, and integrates these components into a predictive measure of protection benefit to the plant. The method we used to average saturating benefits over time could prove useful for quantifying overall service in other mutualisms.  相似文献   

18.
Fiddler crabs, Uca pugnax, were collected from a highly contaminated site and a relatively clean site, both in New Jersey to determine if and how environments with varying levels of pollutants may impact aspects of population biology including individual size, morphology (major cheliped size), population density, fecundity, recruitment and survivorship of early benthic phases. Crabs from the highly contaminated site were significantly larger in size, but had lower population density, lower recruitment, reduced reproductive season and lower survivorship of early benthic phases. Our study suggests that contamination may play a role in population ecology of U. pugnax. This study also determined that the reproductive season for U. pugnax in New Jersey is much longer than reported in the literature and could potentially be impacted by global climate change.  相似文献   

19.
Summary The effect of variation in group size on age-specific survivorship and fecundity rates were examined in a population of wedge-capped capuchin monkeys Cebus olivaceus during a 10 year study. Life tables were constructed separately for four large (15 individuals) and four small groups (<15 individuals). Female reproductive success, and its relative contribution to population growth, was much higher in large groups, primarily through higher age-specific fecundity. Age-specific survivorship was similar in groups of different sizes. The reproductive success of the single breeding male in a group was much higher in large than small groups. Compared to small groups, breeding males in large groups had a longer breeding tenure, and access to greater numbers of reproductive females with a higher average fecundity. Differences in female reproductive success apparently resulted from variation in access to monopolizable fruit trees. Large groups predictably displaced small groups during intergroup encounters. Group rank depended on the number of males resident in groups. The large number of non-breeding males in large groups results from their longer average residency time. I explain the longer residency of males in large groups by the higher average reproductive success of breeding males in these groups.  相似文献   

20.
The conservation of rare plant species hinges on our ability to identify the underlying mechanisms that limit rare plant populations. Theory on rarity suggests that both predispersal seed predation and competition can be important mechanisms influencing abundance and/or distribution of rare plant populations. Yet few studies have tested these interactions, and those that have evaluated each mechanism independently. Astragalus sinuatus Piper (Whited's milkvetch) is a narrow endemic plant species restricted to eight populations within a 10-km2 area in eastern Washington. We used experimental and observational methods to test the effects of native insect predispersal seed predators and an invasive grass (Bromus tectorum L. [cheatgrass]) on seed set and population density of A. sinuatus. We quantified per capita seed production and pod predation rates across four sites and among four years. Seed predation rates were high across four sites (66-82%) and all years (65-82%). Experimental reduction of predispersal seed predators significantly increased per capita seed set of A. sinuatus (164-345%) at two experimental sites. Concurrently, two seed addition experiments demonstrated the effect of seed loss and presence of B. tectorum on seedling recruitment and establishment of A. sinuatus over four growing seasons. In the first seed addition experiment, we found no difference in recruitment and establishment between low (40) and high (120) seed addition levels. In the second addition experiment (one level of addition; 40 seeds), we found that recruitment and survivorship increased 200% in plots where B. tectorum was removed compared to plots where B. tectorum was present. Thus, seed addition had no impact in the presence of B. tectorum; conversely, in the absence of B. tectorum, seed addition was highly effective at increasing population numbers. Results suggest that, in areas where B. tectorum is present, recruitment is site limited, and it is seed limited when B. tectorum is absent. We recommend that managers reduce B. tectorum in an effort to increase population growth of A. sinuatus; in areas where B. tectorum is absent, short-term reduction of insect predators should be considered as a strategy to increase population growth of this rare species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号