共查询到20条相似文献,搜索用时 15 毫秒
1.
Grünhage L Krause GH Köllner B Bender J Weigel HJ Jäger HJ Guderian R 《Environmental pollution (Barking, Essex : 1987)》2001,111(3):355-362
The current European critical levels for ozone (O3) to protect crops, natural and semi-natural vegetation and forest trees are based on a relative small number of open-top chamber experiments with a very limited number of plant species. Therefore, the working group "Effects of Ozone on Plants" of the Commission on Air Pollution Prevention of the Association of German Engineers and the German Institute of Standardization reanalysed the literature on O3 effects on European plant species published between 1989 and 1999. An exposure-response relationship for wild plant species and agricultural crops could be derived from 30 experiments with more than 30 species and 90 data points; the relationship for conifer and deciduous trees is based on 20 experiments with nine species and 50 data points. From these relationships maximum O3 concentrations for different risk stages are deduced, below which the vegetation type is protected on the basis of the respective criteria. Because it is assumed that the fumigation concentrations reflect the O3 concentrations at the top of the canopy, i.e. the upper surface boundary of the quasi-laminar layer if the micrometeorological big-leaf approach is applied, the application of these maximum O3 concentrations requires the transformation of O3 concentrations measured at a reference height above the canopy to the effective phytotoxic concentrations at the top of the canopy. Thus, the approach described in this paper is a synthesis of the classical concept of toxicology of air pollutants (critical concentrations) and the more toxicological relevant dose concept. 相似文献
2.
This paper provides results of ozone flux density measurements above a permanent grassland ecosystem as they relate to an establishment of air quality guidelines or standards. Using a resistance analogue, the product of zone concentration measured at a standard measurement height and the conductivity of the atmosphere reflect the maximum possible ozone flux density towards the envelope of the plants. In other words, this product can be regarded as the ozone exposure potential of the atmosphere for plants. It could be shown that ozone concentrations between 100 and 180 microg m(-3) are likely to have a great phytotoxic potential and are more important than concentrations greater than 180 microg m(-3). From the results presented one can deduce that the application of dose-response relationships based on chamber experiments to ambient conditions results in an overestimation of, for example, yield loses. Any guideline or standard has to take into account the influence of the atmospheric conductivity on the absorbed dose of ozone. 相似文献
3.
Toward a biologically significant and usable standard for ozone that will also protect plants 总被引:3,自引:2,他引:3
Ozone remains an important phytotoxic air pollutant and is also recognized as a significant greenhouse gas. In North America, Europe, and Asia, incidence of high concentrations is decreasing, but background levels are steadily rising. There is a need to develop a biologically significant and usable standard for ozone. We compare the strengths and weaknesses of concentration-based, exposure-based and threshold-based indices, such as SUM60 and AOT40, and examine the O(3) flux concept. We also present major challenges to the development of an air quality standard for ozone that has both biological significance and practicality in usage. 相似文献
4.
Crop yield losses were estimated for ambient O3 concentrations and for a series of potential O3 air quality standards for California, including the current statewide 1-h oxidant (O3) standard of 0.10 ppm (196 microg m(-3)), 12-h growing season averages, and other models. A model for statewide losses was developed using hourly O3 data for all sites in the State, county crop productivity data, and available O3 concentration-yield loss equations to determine potential yield losses for each crop in each county in California for 1984. Losses were based on comparison to an estimated background filtered air concentration of 0.025 or 0.027 ppm, for 12 or 7 h, respectively. Potential losses due to ambient air in 1984 were estimated at 19% to 25% for dry beans, cotton, grapes, lemons, onions, and oranges. Losses of 5% to 9% were estimated for alfalfa and sweet corn. Losses of 4% or less were estimated for barley, field corn, lettuce, grain sorghum, rice, corn silage, spinach, strawberries, sugar beets, fresh tomatoes, processing tomatoes, and wheat. Implementation of either a modified rollback to meet the current 1 h California O3 standard (0.10 ppm) or a three-month, 12-h growing season average of 0.045 ppm was necessary to produce large reductions in potential crop losses. 相似文献
5.
Six properties appear desirable for any set of ozone attainment criteria: (1) sufficient stringency to protect public health, (2) simplicity and understandability, (3) sensitivity to real changes in air quality, (4) stability against meteorological fluctuations, (5) use of as much data as possible, and (6) equivalence between the stringency the criteria appear to mandate, and what they actually mandate. We consider how the federal attainment criteria might be improved with respect to Properties 4 through 6 while being equally strong on 1 through 3. Whether the federal standard meets Property 1 has been the subject of debate, but our analysis would apply also to a modified standard. We show that there are subtleties in how improvements might be made. In particular, basing the attainment status on a statistic with low variance may not lead to a more stable criterion, and although it is easy to find a criterion that makes it hard for a district with bad air to reach attainment, or a district with good air to get out of attainment, it is hard to find a criterion that does both. This suggests using different criteria for districts that are out of attainment from districts that are in attainment. Initially the burden of proof would be on the district to prove that its air is of attainment quality. However, once the district has achieved attainment the burden of proof would shift; the district would remain in attainment unless there was strong evidence to the contrary.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
6.
Spicer CW Joseph DW Ollison WM 《Journal of the Air & Waste Management Association (1995)》2010,60(11):1353-1364
Attaining the National Ambient Air Quality Standard (NAAQS) for ozone (O3) could cost billions of dollars nationwide. Attainment of the NAAQS is judged on O3 measurements made by the Federal Reference Method (FRM), ethylene chemiluminescence, or a Federal Equivalent Method (FEM), predominantly ultraviolet (UV) absorption. Starting in the 1980s, FRM monitors were replaced by FEMs so that today virtually all monitoring in the United States uses the UV methodology. This report summarizes a laboratory and collocated ambient air monitoring study of interferences in O3 monitors. Potential interferences examined in the laboratory included water vapor, mercury, o-nitrophenol, naphthalene, p-tolualdehyde, and mixed reaction products from smog chamber simulations of urban atmospheric photochemistry. UV absorption O3 monitors modified for humidity equilibration were also collocated with UV FEM O3 monitors at six sites in Houston, TX, during the 2007 summer O3 season. The results suggest that humidity and interfering species can positively bias (overestimate) O3 measured by FEM monitors used to determine compliance with the O3 standards. The results also suggest that humidity equilibration can mitigate this bias. 相似文献
7.
Carlo Calfapietra Silvano Fares Francesco Loreto 《Environmental pollution (Barking, Essex : 1987)》2009,157(5):1478-1486
Volatile Organic Compounds (VOCs) emitted from vegetation (particularly isoprenoids) represent an important source of atmospheric hydrocarbons almost double the anthropogenic source. When biogenic VOC mix with NOx in the presence of UV radiation, ozone (O3) is formed. In Italy, optimal conditions for O3 formation in terms of VOC/NOx ratios and abundance of UV radiation occur for long periods of the year. Moreover, Italian vegetation includes several species that are strong and evergreen isoprenoid emitters, and high temperatures for part of the year further stimulate these temperature-dependent emissions. We review emission of isoprenoids from Italian vegetation, current knowledge on the impact of rising O3 levels on isoprenoid emission, and evidence showing that isoprenoids can increase both the O3 flux to the plant and protection against oxidative stress because of their antioxidant functions. This trait not only influences plant tolerance to O3 but also may substantially alter the flux of O3 between atmosphere and biosphere. 相似文献
8.
Only few studies have been conducted as yet which focus on the effects of rising tropospheric ozone levels on semi-natural vegetation under free-air conditions. A new technical approach was used to examine the response of calcareous grassland to ozone employing a chamberless fumigation system. Four different ozone regimes were applied (1-, 1.33-, 1.66- and 2-fold ambient air levels) with five replicates each. Ozone enrichment was carried out on circular plots of 2 m in diameter by a computer controlled exposure system. Transparent windscreens encircling each plot accelerated the mixing of ambient air and ozone released. Thus, the use of blowers could be avoided. The exposure system presented here is regarded as an appropriate technique for free-air trace gas enrichment on short vegetation avoiding microclimatic alterations known to affect plant growth and pollutant uptake. Furthermore, the chosen technical set-up was rather cost-effective. Hence, it enabled the establishment of a larger number of replications providing the basis for results of higher statistical power. 相似文献
9.
Hayes F Jones ML Mills G Ashmore M 《Environmental pollution (Barking, Essex : 1987)》2007,146(3):754-762
This study identified 83 species from existing publications suitable for inclusion in a database of sensitivity of species to ozone (OZOVEG database). An index, the relative sensitivity to ozone, was calculated for each species based on changes in biomass in order to test for species traits associated with ozone sensitivity. Meta-analysis of the ozone sensitivity data showed a wide inter-specific range in response to ozone. Some relationships in comparison to plant physiological and ecological characteristics were identified. Plants of the therophyte lifeform were particularly sensitive to ozone. Species with higher mature leaf N concentration were more sensitive to ozone than those with lower leaf N concentration. Some relationships between relative sensitivity to ozone and Ellenberg habitat requirements were also identified. In contrast, no relationships between relative sensitivity to ozone and mature leaf P concentration, Grime's CSR strategy, leaf longevity, flowering season, stomatal density and maximum altitude were found. The relative sensitivity of species and relationships with plant characteristics identified in this study could be used to predict sensitivity to ozone of untested species and communities. 相似文献
10.
A comparison of two different approaches for mapping potential ozone damage to vegetation. A model study 总被引:1,自引:0,他引:1
Simpson D Ashmore MR Emberson L Tuovinen JP 《Environmental pollution (Barking, Essex : 1987)》2007,146(3):715-725
Two very different types of approaches are currently in use today for indicating risk of ozone damage to vegetation in Europe. One approach is the so-called AOTX (accumulated exposure over threshold of Xppb) index, which is based upon ozone concentrations only. The second type of approach entails an estimate of the amount of ozone entering via the stomates of vegetation, the AFstY approach (accumulated stomatal flux over threshold of Y nmol m(-2) s(-1)). The EMEP chemical transport model is used to map these different indicators of ozone damage across Europe, for two illustrative vegetation types, wheat and beech forests. The results show that exceedences of critical levels for either type of indicator are widespread, but that the indicators give very different spatial patterns across Europe. Model simulations for year 2020 scenarios suggest reductions in risks of vegetation damage whichever indicator is used, but suggest that AOT40 is much more sensitive to emission control than AFstY values. 相似文献
11.
Atmospheric ozone: formation and effects on vegetation 总被引:20,自引:0,他引:20
Ozone (O(3)) is present both in the troposphere and the stratosphere. Troposphere O(3) is predominantly produced by photochemical reactions involving precursors generated by natural processes and to a much larger extent by man's activities. There is evidence for a trend towards increasing tropospheric O(3) concentrations. However, tropospheric O(3) is known to account for only 10% of the vertical O(3) column above the earth's surface. The stratosphere accounts for an additional 90% of the O(3) column. There is evidence to suggest that there are losses in the stratospheric O(3) due to the updraft of O(3) destroying pollutants generated by both natural processes and by human activity. Such a loss in stratospheric O(3) can result in alterations of incidence in the ultraviolet (UV) radiation to the earth's surface. Tropospheric O(3) is known to be highly phytotoxic. Appropriate exposures to O(3) can result in both acute (symptomatic) and chronic (changes in growth, yield or productivity and quality) effects. Chronic effects are of great concern in terms of both crops and forests. A number of experimental techniques are available to evaluate the chronic effects of O(3) on plants. There are limitations attached to the use of these techniques. However, results obtained, with such techniques are valuable if interpreted in the appropriate context. Among all field evaluation techniques, open-top chambers are the most frequently used method for evaluating the chronic effects of O(3) on crops. The National Crop Loss Assessment Program (NCLAN) of the United States is the largest such effort. However, given the limitations of the open-top chambers and the experimental aspects of NCLAN, its results must be interpreted with caution. On the other hand, acute effects can be evaluated with less complexity through the use of biological indicator plants. The numerical modelling of such effects are also far less complicated than establishing numerical cause and effects relationships for chronic effects. Confounding the acute or chronic responses of plants to O(3), is the presence of other kinds and forms of pollutants in the ambient atmosphere and the incidence of pathogens and pests. The resulting complex interactions and joint effects on plants are poorly understood. Future research must address these issues. In the final analysis we have re-emphasized the fact that plant health is the product of its interaction with the physical and chemical climatology and pathogens and pests. What we have described in this context is the importance of tropospheric O(3) within the chemical climatology of our environment and its effects on vegetation. 相似文献
12.
Robert L. Heath Allen S. Lefohn Robert C. Musselman 《Atmospheric environment (Oxford, England : 1994)》2009,43(18):2919-2928
Ozone interacts with plant tissue through distinct temporal processes. Sequentially, plants are exposed to ambient O3 that (1) moves through the leaf boundary layer, (2) is taken up into plant tissue primarily through stomata, and (3) undergoes chemical interaction within plant tissue, first by initiating alterations and then as part of plant detoxification and repair. In this paper, we discuss the linkage of the temporal variability of apoplastic ascorbate with the diurnal variability of defense mechanisms in plants and compare this variability with daily maximum O3 concentration and diurnal uptake and entry of O3 into the plant through stomata. We describe the quantitative evidence on temporal variability in concentration and uptake and find that the time incidence for maximum defense does not necessarily match diurnal patterns for maximum O3 concentration or maximum uptake. We suggest that the observed out-of-phase association of the diurnal patterns for the above three processes produces a nonlinear relationship that results in a greater response from the higher hourly average O3 concentrations than from the lower or mid-level values. The fact that these out-of-phase processes affect the relationship between O3 exposure/dose and vegetation effects ultimately impact the ability of flux-based indices to predict vegetation effects accurately for purposes of standard setting and critical levels. Based on the quantitative aspect of temporal variability identified in this paper, we suggest that the inclusion of a diurnal pattern for detoxification in effective flux-based models would improve the predictive characteristics of the models. While much of the current information has been obtained using high O3 exposures, future research results derived from laboratory biochemical experiments that use short but elevated O3 exposures should be combined with experimental results that use ambient-type exposures over longer periods of time. It is anticipated that improved understanding will come from future research focused on diurnal variability in plant defense mechanisms and their relationship to the diurnal variability in ambient O3 concentration and stomatal conductance. This should result in more reliable O3 exposure standards and critical levels. 相似文献
13.
K. Piikki J. Klingberg G. Pihl Karlsson P.E. Karlsson H. Pleijel 《Environmental pollution (Barking, Essex : 1987)》2009,157(11):3051-3058
Surface ozone concentration and surface air temperature was measured hourly at three coastal sites, four low elevation inland sites and two high elevation inland sites in southwestern Sweden. Diurnal ozone concentration range (DOR) and diurnal temperature range (DTR) were strongly correlated, both spatially and temporally, most likely because both depended on atmospheric stability. Accumulated ozone exposure above a threshold concentration of x nmol mol−1 (AOTx) was estimated from time-integrated ozone concentration (as from diffusive sampling) and measures of ozone concentration variability. Two methods both estimated 24-h AOTx with high accuracy (modelling efficiencies >90% for x ≤ 40 nmol mol−1). Daytime (08:00–20:00) AOTx could not be equally well estimated. Estimates were better for lower AOT thresholds. Diffusive ozone concentration sampling, combined with hourly temperature monitoring, could be a valuable complement to ozone concentration monitoring with continuous instruments. 相似文献
14.
Annick D. St-Amand Paul M. Mayer Jules M. Blais 《Atmospheric environment (Oxford, England : 1994)》2009,43(28):4283-4288
We examined PAH uptake by Norway spruce needles following the emergence of new buds in spring 2004–June 2005. Atmospheric PAH concentrations (gaseous phase and particle-bound) were monitored during this period, and PAH concentrations from these three environmental media were then used to calculate deposition and transfer velocities. Benzo(a)pyrene was found almost exclusively associated to particles and thus was used to determine a particle-bound deposition velocity of 10.8 m h?1. PAHs present in both compartments had net gaseous transfer velocities ranging from negligible values to 75.6 m h?1 and correlated significantly with log KOA. The loss velocities thereafter calculated were found to be higher for more volatile PAHs. Using the calculated average atmospheric PAH concentrations and deposition velocities, it was thus possible to model PAH uptake by vegetation through time. We demonstrate that this approach can be used to determine deposition velocities without the use of a surrogate surface. In considering both particulate-bound and gaseous deposition processes this model can be used not only to study air–foliage exchange of semi-volatile organic compounds, but also to illustrate the relative contribution of gaseous deposition and particulate-bound deposition in the overall atmospheric vegetation uptake of semi-volatile organic compounds. 相似文献
15.
Ch. Vlachokostas S.A. Nastis Ch. Achillas K. Kalogeropoulos I. Karmiris N. Moussiopoulos E. Chourdakis G. Banias N. Limperi 《Atmospheric environment (Oxford, England : 1994)》2010,44(28):3352-3361
This study aims at presenting a combined air quality and GIS modelling methodological approach in order to estimate crop damages from photochemical air pollution, depict their spatial resolution and assess the order of magnitude regarding the corresponding economic damages. The analysis is conducted within the Greater Thessaloniki Area, Greece, a Mediterranean territory which is characterised by high levels of photochemical air pollution and considerable agricultural activity. Ozone concentration fields for 2002 and for specific emission reduction scenarios for the year 2010 were estimated with the Ozone Fine Structure model in the area under consideration. Total economic damage to crops turns out to be significant and estimated to be approximately 43 M€ for the reference year. Production of cotton presents the highest economic loss, which is over 16 M€, followed by table tomato (9 M€), rice (4.2 M€), wheat (4 M€) and oilseed rape (2.8 M€) cultivations. Losses are not spread uniformly among farmers and the major losses occur in areas with valuable ozone-sensitive crops. The results are very useful for highlighting the magnitude of the total economic impacts of photochemical air pollution to the area’s agricultural sector and can potentially be used for comparison with studies worldwide. Furthermore, spatial analysis of the economic damage could be of importance for governmental authorities and decision makers since it provides an indicative insight, especially if the economic instruments such as financial incentives or state subsidies to farmers are considered. 相似文献
16.
17.
Critical levels for ozone effects on vegetation in Europe 总被引:36,自引:0,他引:36
The evidence of detrimental effects of ozone on vegetation in Europe, and the need to develop international control policies to reduce ozone exposures which are based on the effects of the pollutant, has led to attempts to define so-called critical levels of ozone above which adverse effects on trees, crops and natural vegetation may occur. This review is a critical assessment of the scientific basis of the concepts used to define critical levels for ozone and identifies the key limitations and uncertainties involved. The review focuses on the Level I critical level approach, which provides an environmental standard or threshold to minimise the effects of ozone on sensitive receptors, but does not seek to quantify the impacts of exceeding the critical level under field conditions. The concept of using the AOT (accumulated exposure over a threshold) to define long-term ozone exposure is demonstrated to be appropriate for several economically important species. The use of 40 ppb (giving the AOT40 index) as a threshold concentration gives a good linear fit to experimental data from open-top chambers for arable crops, but it is less certain that it provides the best fit to data for trees or semi-natural communities. Major uncertainties in defining critical level values relate to the choice of response parameter and species; the absence of data for many receptors, especially those of Mediterranean areas; and extrapolation to field conditions from relatively short-term open-top chamber experiments. The derivation of critical levels for long-lived organisms, such as forest trees, may require the use of modelling techniques based on physiological data from experimental studies. The exposure-response data which have been applied to derive critical levels should not be used to estimate the impacts of ozone over large areas, because of the uncertainties associated with extrapolation from the open-top chamber method, especially for forest trees, and because of spatial variation in atmospheric and environmental conditions, which may alter ozone uptake. 相似文献
18.
An experimental study on the formation and transport of ozone in ambient air was performed in Tenerife (Canary Islands) in order to investigate the processes affecting ozone levels and air quality. The special features of Tenerife (prevalence of the trade wind pattern (NE), orography and the specific location of the local ozone sources) permit to quantify the role of the ‘long-range transport from northern latitudes' versus the ‘formation and transport of ozone downwind of the main urban areas' of Tenerife. Levels of O3, NO2 and OX were monitored in different types of environments to achieve this purpose. The results showed that: (1) upwind of the urban areas ozone is mainly transported from the ocean by trade winds, (2) local ozone titration (by NO) and ozone replenishment from the ocean are the main causes of ozone variations in urban and suburban areas, and (3) photochemical ozone production occurs downwind of the urban areas. Photochemical production causes daylight O3 and OX levels downwind of urban areas to be frequently (60% and 35% days/year, respectively) higher than upwind of the urban sites (O3 and OX excess frequently in the range 5–20 ppbv). Due to the above processes, different daily ozone cycles occur in short distances (<30 km), with maximum O3 levels during daylight or night depending on the site. Ozone phytotoxicity was assessed by calculating the AOT40 index upwind and downwind of the main urban areas. The critical value for the 5-day-AOT40 index was simultaneously exceeded at the two sites (few times/year) during long-range transport events. During the additional exceedances of the critical value downwind of the urban area, relatively high 5-day-AOT40 values were recorded upwind of the urban site. Thus, long-range transport from northern latitudes may produce relatively high 5-days-AOT40 levels in the oceanic boundary layer. These results are important for the protection of the large number of endemic plants in the Canaries. The conceptual model discussed in this study may be qualitatively applied to other islands which possess features similar to those of Tenerife. 相似文献
19.
Musselman RC McCool PM Younglove T 《Environmental pollution (Barking, Essex : 1987)》1988,53(1-4):63-78
Numerous ozone exposure statistics were calculated using hourly ozone data from crop yield loss experiments previously conducted for alfalfa, fresh market and processing tomatoes, cotton, and dry beans in an ambient ozone gradient near Los Angeles, California. Exposure statistics examined included peak (maximum daily hourly) and mean concentrations above specific threshold levels, and concentrations during specific time periods of the day. Peak and mean statistics weighted for ozone concentration and time period statistics weighted for hour of the day were also determined. Polynomial regression analysis was used to relate each of 163 ozone statistics to crop yield. Performance of the various statistics was rated by comparing residual mean square (RMS) values. The analyses demonstrated that no single statistic was best for all crop species. Ozone statistics with a threshold level performed well for most crops, but optimum threshold level was dependent upon crop species and varied with the particular statistics calculated. The data indicated that daily hours of exposure above a critical high-concentration threshold related well to crop yield for alfalfa, market tomatoes, and dry beans. The best statistic for cotton yield was an average of all daily peak ozone concentrations. Several different types of ozone statistics performed similarly for processing tomatoes. These analyses suggest that several ozone summary statistics should be examined in assessing the relationship of ambient ozone exposure to crop yield. Where no clear statistical preference is indicated among several statistics, those most biologically relevant should be selected. 相似文献
20.
环境空气中臭氧的催化消除 总被引:1,自引:0,他引:1
以浸渍法在涂有γAl2O3的蜂窝陶瓷上担载贵金属,以过渡金属氧化物作助剂,通过改变助剂、助剂含量及焙烧温度,寻找出低温下较佳的臭氧分解催化剂:Pd/6.7%Mn-Al2O3-coated及在400~500℃焙烧的Au/37.5%Mn-Al23-coated,尤其是后者,在45℃,空速为22333h^-1,臭氧转化率可达90.1%。以等体积浸渍法制备活性炭负载的单、双过渡金属氧化物催化剂,考察活性组分对催化活性的影响。用XPS进行表征,观察到第二金属(如Cu)的引入导致Mn2p1/2、Mn2p3/2电子结合能向低处位移,从而表明催化剂表面提供的活性位锰有所增加,评价结果为双金属氧化物催化剂比单一金属氧化物催化剂活性有大幅提高。 相似文献