共查询到18条相似文献,搜索用时 62 毫秒
1.
一、臭氧化单元 1、臭氧扩散装置的选择臭氧接触是臭氧化一生物活性炭工艺的重要处理单元之一,臭氧接触的效果直接影响到有机污染物的去除和生物活性炭的效能。在试验中,我们以鼓泡扩散设备为对象考察不同扩散装置对臭氧化的影响。传统的气水两相过程中,穿孔管十分常见,它具有加工制作简单、不易堵塞、压力损失小等优点,但接触效率较低是最大的缺陷。为此,我们将孔眼直径由通 相似文献
2.
3.
通过预臭氧和生物活性炭工艺对饮用水进行深度处理研究,结果证明:该工艺对CODMn、UV254、三卤甲烷生成势(THMFP)、藻类和浊度的平均去除率分别为46.5%、46.5%、45.6%、91.2%和98%,最终出水浊度达到0.2NTU,CODMn≤3mg/L,提高了饮用水的安全性. 相似文献
4.
臭氧——生物活性炭技术在微污染水处理中的应用 总被引:14,自引:0,他引:14
分析了臭氧-生物活性炭法的基本作用原理以及介绍了国内研究和应用该法的情况,并提出了应用该法所需注意的一些问题。 相似文献
5.
臭氧—生物活性炭净水工艺研究 总被引:6,自引:0,他引:6
采用活性炭物理化学吸附、臭氧化学氧化、生物氧化降解及臭氧灭菌消毒4种技术合为一体的工艺,对自来水进行深度处理,并据此研制净水器。结果表明,本工艺流程合理,结构紧凑,管理方便,并能高效地去除常规水处理工艺不能去除的水中溶解性有机物及致突变物,获得安全、优质的饮用水。 相似文献
6.
臭氧-生物活性炭组合工艺中最佳臭氧投加剂量的确定 总被引:9,自引:1,他引:9
在水处理过程中投加臭氧,可提高饮用水的可生物降解性.臭氧氧化后继的生物过滤,可以减少水中可生物降解有机物数量,提高饮用水的生物稳定性.试验表明,臭氧投加量2~8mg/L可使AOC-P17,AOC-NOX和BDOC分别增加20.9%~85.5%,42.1%~158.2%和21.4%~84.4%.臭氧投加量为3mg/L时,AOC和BDOC增加得最多,即3mg/L的臭氧投量为最佳投加剂量.生物活性炭滤柱(BAC)出水AOC浓度(乙酸碳)均低于50μg/L,在35.9~46.6μg/L之间,属于生物稳定性水质. 相似文献
7.
8.
为了探究面向长江水源的臭氧-生物活性炭深度处理工艺的挂膜技术,进行了长江原水常州段的臭氧-生物活性炭挂膜中试研究.结果表明,在挂膜前期,由于炭柱的物理吸附作用逐渐饱和,炭柱对DOC(溶解性有机碳)、UV_(254)和COD_(Mn)(高锰酸盐指数)的去除率逐渐降低,对氨氮几乎没有去除,在挂膜中后期,由于活性炭上生物膜逐渐成熟,生物降解起主导作用,有机物和氨氮去除率升高并趋于稳定.90 d后,炭柱对DOC、UV_(254)和COD_(Mn)这3个有机物指标的去除率分别稳定在30.64%、57.50%和30.00%以上,氨氮去除率稳定在88.93%左右,认为挂膜成功.扫描电镜图显示活性炭表面出现丰富的菌胶团,同时高通量测序也验证了活性炭中丰富多样的微生物群落结构. 相似文献
9.
预臭氧与后臭氧-生物活性炭联用工艺研究 总被引:3,自引:0,他引:3
利用静态批量和动态连续试验初步研究了预臭氧及预臭氧与后臭氧-BAC组合工艺对南方某含溴离子水库水的处理效果和相应的处理条件.静态实验结果表明,预臭氧反应量在0.5~1.0mg/L范围内,在有效去除消毒副产物(DBPFP,主要包括THMFP和HAAFP)的同时,臭氧副产物溴酸可以控制在10μg/L以下,而继续增加臭氧反应量则会导致DBPFP的增加.当水中溴离子浓度达到96μg/L时,使用臭氧必须采取溴酸控制措施.连续动态实验结果表明,预臭氧与臭氧-生物活性炭组合工艺对于2μm以上颗粒物、CODMn、TOC等的去除均有明显的效果,可以进一步抑制DBPs的形成. 相似文献
10.
结合MBR和污泥臭氧化各自的优点,开展了化学法和生物法相结合的污泥减量技术研究,对污泥臭氧化的特点及其对MBR运行效能的影响进行了考察.实验表明,污泥细胞的溶解随着臭氧投加量的增加而改善,但当投加量大于0.16mg/mgMLVSS时,污泥混合液的性状(MLVSS、SCOD)变化趋缓.在最佳的投加量下,53.1%的MLVSS被臭氧溶解,而SCOD和TN分别升高1287,143.9mg/L.臭氧对有机物的氧化使得液相中的C/N比仅为8.6.通过3个MBR系统[污泥臭氧化的数量分别为进水流量(Q)的0、0.5%和1%]的平行运行,结果显示,臭氧化能够显著降低系统的污泥产率(0.5%Q和1%Q系统的污泥产率仅为0.17,0.12kgMLSS/kgCOD,较0Q系统分别下降了29%和50%),同时不对硝化和有机物的去除作用产生明显的影响,系统出水水质良好. 相似文献
11.
12.
O3/H2O2氧化工艺去除水中硝基苯的研究 总被引:21,自引:3,他引:21
以硝基苯为代表性有机污染物 ,对比了臭氧化和O3/H2 O2 高级氧化工艺对水中硝基苯的去除效果 .发现与臭氧化相比 ,O3/H2 O2 高级氧化工艺可以显著地提高水中硝基苯的去除效率 .无论在臭氧化还是在O3/H2 O2 高级氧化工艺中 ,水中硝基苯的降解都主要是由OH·完成的 .通过考察O3/H2 O2 高级氧化工艺去除水中硝基苯的影响因素发现 ,在O3和过H2 O2 投量相同的条件下 ,多次投加O3和催化剂H2 O2 对水中硝基苯的处理效果明显优于一次性投加 ;在本次试验条件下 ,O3/H2 O2 高级氧化工艺降解蒸馏水和自来水中硝基苯的最优H2 O2 与O3摩尔比均为 0 5 ,HCO- 3碱度水平 (以CaCO3计 )在低于 1 0 0mg/L范围内对去除硝基苯无显著影响 相似文献
13.
UV、H2O2、O3及其联用工艺对水中DMP的去除效果和降解机理分析 总被引:10,自引:1,他引:10
采用UV、H2O2、O3及其联用工艺对自来水本底条件下邻苯二甲酸二甲酯(DMP)的去除效果、特性及降解机理进行了对比和分析.采用单独的UV光照射不能有效去除DMP;而UV-H2O2联用工艺对DMP具有良好的去除效果.在DMP初始浓度约为1.0 mg·L-1,UV光强为133.9μW·cm-2,H2O2投加量为20 mg·L-1的条件下,30 min后DMP的去除效果可以达到73.08%,在降解过程中,监测到DMP氧化产物;当DMP初始浓度约为1.0 mg·L-1,O3投加量为3 mg·L-1时,单独O3氧化DMP的去除率为55.81%;UV-O3联用工艺对DMP的去除效果略优于单独O3氧化,去除效果提高了10%左右.单独O3和UV-O3氧化在初始氧化阶段可形成不同于UV-H2O2工艺的降解产物;UV-H2O2-O3联用工艺能高效氧化水中DMP,O3的投加不但极大的增强了UV-H2O2工艺的氧化性能,同时抑制了UV+H2O2降解过程中DMP氧化产物的生成,并使生成的产物快速降解.几种氧化工艺对DMP去除效果顺序依次为UV<O3<UV-O3<UV-H2O2<UV-H2O2-O3. 相似文献
14.
含溴水源水臭氧处理时溴酸盐的产生与控制 总被引:2,自引:0,他引:2
针对南方某含溴水库水(溴离子浓度15~38μg·L-1),利用连续运行实验装置研究了臭氧氧化时溴酸盐的产生条件,同时初步考察了后续生物活性炭(BAC)对溴酸盐的去除效果.研究结果表明,单独采用预臭氧方式时,在臭氧消耗量控制为2.0mg·L-1以内的条件下,溴酸离子浓度低于6 μg·L-1;而采用预臭氧与后臭氧联合处理时,在总臭氧消耗量为2.0mg·L-1的条件下,出现了溴酸离子超标(10μg·L-1)情况.长期运行结果表明,尽管新炭对溴酸离子没有去除效果,但系统连续运行3个月后,BAC上的微生物对溴酸盐具有一定的去除能力. 相似文献
15.
Effects of advanced oxidation pretreatment on residual aluminum control in
high humic acid water purification 总被引:2,自引:0,他引:2
Due to the formation of disinfection by-products and high concentrations of Al residue in drinking water purification, humic
substances are a major component of organic matter in natural waters and have therefore received a great deal of attention in recent
years. We investigated the effects of advanced oxidation pretreatment methods usually applied for removing dissolved organic matters
on residual Al control. Results showed that the presence of humic acid increased residual Al concentration notably. With 15 mg/L of
humic acid in raw water, the concentrations of soluble aluminum and total aluminum in the treated water were close to the quantity
of Al addition. After increasing coagulant dosage from 12 to 120 mg/L, the total-Al in the treated water was controlled to below 0.2
mg/L. Purification systems with ozonation, chlorination, or potassium permanganate oxidation pretreatment units had little effects on
residual Al control; while UV radiation decreased Al concentration notably. Combined with ozonation, the effects of UV radiation were
enhanced. Optimal dosages were 0.5 mg O3/mg C and 3 hr for raw water with 15 mg/L of humic acid. Under UV light radiation, the
combined forces or bonds that existed among humic acid molecules were destroyed; adsorption sites increased positively with radiation
time, which promoted adsorption of humic acid onto polymeric aluminum and Al(OH)3(s). This work provides a new solution for
humic acid coagulation and residual Al control for raw water with humic acid purification. 相似文献
16.
17.
18.
臭氧-接种生物滤池组合工艺去除饮用水中典型致嗅物质 总被引:1,自引:0,他引:1
通过在生物滤池表面接种MIB(2-甲基异茨醇)及geosmin(土臭素)降解菌,增强生物滤池的作用,并探讨臭氧-生物滤池组合工艺对MIB和geosmin的处理效果. 结果表明:单独接种生物滤池可使ρ(MIB)和ρ(geosmin)从初始的500ng/L分别降至125和112ng/L,MIB和geosmin的去除效果先随EBCT(空床停留时间)的延长而显著增加,但当EBCT大于20min后无明显变化;随着滤料深度的增加,滤池生物量逐渐降低,对污染物的去除率增加缓慢.在接种生物滤池前增加臭氧单元,当EBCT为20min、臭氧投加量为2mg/L时,臭氧-接种生物滤池组合工艺可去除84%的MIB和94%的geosmin,其中接种生物滤池单元中生物量随滤池深度的增加呈先增后减的趋势,滤料深度为100~200mm时,单位高度滤料的去除率最高. 采用臭氧-接种生物滤池组合工艺可有效去除水中的MIB和geosmin. 相似文献