首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 531 毫秒
1.
环境监测     
X8312(X) 203194汞在北京大气中细颗粒物上的分布/王文华(_h海交通大学环境科学与工程学院),二//上海文通大学学报/上海交通大学一2(X犯,36(l)一1抖一137 环图N一42 为了解汞在北京大气中细颗粒上的分布,用AN一2佣型安德森冲击式分级采样器于1997年11月30日一1998年2月8日(采暖期),在北京3个采样点同步采取不同粒径(4 .7一10.1、1一4.7和0.43一1.1脚)的颗粒物,测定了其上汞的质量浓度。影响大气中颗粒态汞的因素较多,释放源是其中之一。3个采样点中最大颗粒物态汞浓度并未在工业区出现,表明北京市大气中颗粒态汞的环境行为复杂,可能具有…  相似文献   

2.
滨海城市气溶胶中颗粒态汞的分布特征   总被引:3,自引:2,他引:1  
张福旺  赵金平  陈进生  徐亚 《环境科学》2010,31(10):2273-2278
与气溶胶颗粒相结合的汞,即颗粒态汞,不仅对人体健康及生态环境产生一定的危害,而且在汞的生物地球化学过程扮演重要角色.以我国东南滨海城市厦门市为研究对象,采集郊区、居民区、旅游区、工业区和背景区四季(2008年10月~2009年8月)的PM2.5、PM10和TSP样品,基于塞曼原子吸收法的俄罗斯LumexRA-915+汞分析仪对大气不同粒径颗粒物中颗粒态汞进行了测试.结果表明,厦门市大气不同粒径颗粒物中汞的含量均表现为冬、春两季的浓度明显高于夏、秋两季;春、夏、秋、冬四季细颗粒物(PM2.5)中的含量分别为(51.46±19.28)、(42.41±12.74)、(38.38±6.08)和(127.23±33.70)pg/m3.不同粒径颗粒物中汞主要分布在PM2.5中,占到颗粒物态汞的42.48%~67.87%,表明细粒子富集汞的能力较强.不同功能区颗粒态汞的浓度分布趋势为背景区居民区旅游区工业区郊区,说明颗粒态汞浓度的空间分布特征与采样点的环境功能密切相关.总体而言,滨海城市大气颗粒态汞含量较低;PM2.5对颗粒态汞的富集明显高于PM10和TSP,表明对颗粒态汞的控制应集中在细颗粒物污染上.  相似文献   

3.
废水中总汞样品的消解与测定方法,常采用全球环境监测系统所推荐的方法。在硫酸-硝酸介质中,用高锰酸钾和过硫酸钾作氧化剂,于水浴上加热消解,以冷原子吸收法测定总汞。该法虽然在提出前已进行了详细研究,但在我国试用中,普遍反映对未过滤工业废水测定结果再现性(批间精密度)很差。本文针对上述问题,用不同类型工业废水,从样品保存,氧化剂对各种形态汞的转化效果,消解加热条件,干扰物和实验操作步骤等方面进行了详细的研究。实验证实引起误差的主要因素是样品保存、处理方法和样品  相似文献   

4.
嵊泗地区大气PM2.5中汞形态污染及其与碳组分的关系   总被引:1,自引:1,他引:0  
2014年11月~2015年8月在舟山群岛嵊泗岛上设定采样点采集了4个不同季节的大气PM_(2.5)样品.采用微波消解-原子荧光光度法测定了颗粒物中汞及其不同形态,采用热/光碳分析仪分析样品中有机碳(OC)和元素碳(EC).结果表明,嵊泗岛上大气PM_(2.5)中总汞(PBM)的质量浓度范围为0.02~1.25 ng·m-3,而单位质量颗粒物中汞的含量为(12.46±18.79)μg·g-1,比陆地城市PM_(2.5)的汞含量偏高.ANOVA分析结果表明,PBM的季节变化规律为:秋季春季冬季夏季.春秋季节汞的质量浓度较高,这表明春秋季节嵊泗地区的汞可能受到外来输送的影响.此外,大气PM_(2.5)中不同形态汞的分析结果表明,惰性汞(RPM)的比例最高,占53.1%.OC、EC均与PBM显示出明显的正相关性,表明碳组分有利于汞的气-粒转化.由于OC/EC比值间接反映了大气光氧化能力的高低,而OC/EC与可溶盐酸汞(HPM)呈显著正相关,这说明高浓度HPM主要来自于大气中的气-粒转化.char-EC/soot-EC与形态汞呈现显著负相关,表明嵊泗地区的大气颗粒汞主要受外界源输入的影响.  相似文献   

5.
长春市大气颗粒汞污染特征及影响因子分析   总被引:12,自引:0,他引:12       下载免费PDF全文
应用大流量大气采样器采集的TSP样品测定了长春市4个功能区及一个对照点的大气颗粒汞浓度。结果表明,大气颗粒汞体积浓度(Cv)与单位重量颗粒物上的汞含量(Cm)在时间上呈相似的变化趋势,采暖期高于非采暖期。而在空间上则相反,Cv市区大于对照点,对Cm则对照点大于市区,说明了大气颗粒汞主要结合在细粒径的颗粒物上。TSP与大气颗粒汞浓度呈正相关关系,它是大气颗粒汞浓度的决定性因素;降水是影响大气颗粒汞的主要气象因子,燃煤与地面扬尘是大气颗粒汞的两个主要来源。  相似文献   

6.
石油裂解气中汞的形态主要有气态汞和颗粒态汞。《空气和废气监测分析方法》(第四版),废气中汞有高锰酸钾溶液吸收法和玻璃纤维滤膜(滤筒)两种采样方法。溶液吸收法适合气态汞采样,滤膜(滤筒)采样法适合颗粒态汞采样。本文将两种采样方法串联对某石化企业的石油裂解气总汞进行监测分析,结果表明:石油裂解气中颗粒态汞与气态汞比例约为1:9;气态汞样品平行性较好,两个点位6次RSD值分别为17.2%和17.0%;颗粒态汞两个点位6次RSD值分别为25.3%和23.1%。建议对石油裂解气总汞监测采用玻璃纤维滤膜和高锰酸钾溶液吸收法串联采样。  相似文献   

7.
于2004—2007年在上海市西南部某采样点使用分级采样器和PM10采样器采集大气颗粒物样品,采用化学序批式提取法分析了颗粒物中的ExPM(可交换汞)、HPM(可溶盐酸汞)、EPM(元素汞)和RPM(剩余汞)4种形态汞的含量. 结果表明:颗粒物中ρ(total-Hg)(total-Hg为总汞)在0.07~1.44ng/m3之间,47.8%集中在粒径<1.6μm的颗粒物中;颗粒物中w(total-Hg)在0.35~6.89μg/g之间,高于煤炭和水泥中的含量; 颗粒物中ρ(total-Hg)在冬、春季较高,夏季较低; PM10中ρ(total-Hg)日变化呈双峰型,然而w(total-Hg)的日变化并不明显.夜间各种形态汞的质量浓度都高于白天.汞的形态受气象条件和污染源分布的影响. 除了2006年春季外,其他年份各季节的w(HPM)基本持平;ρ(EPM)在2005年冬季和2006年春季均出现较高值,分别为0.19和0.17ng/m3. HPM和EPM主要集中在细颗粒物上,而RPM在粒径<1.6μm和1.6~<3.7μm颗粒物中的分布无明显差异. 颗粒物中的ρ(total-Hg)、ρ(RPM)与温度、日温差、相对湿度呈显著负相关,与ρ(SO2)呈正相关;但ρ(HPM)和ρ(EPM)与这些参数的相关性不同. 这可能与HPM和EPM的来源与大气化学特征有关,其中,HPM易溶解于液相,与对光照依赖性很强的光化学反应有关;而EPM主要取决于一次来源的贡献和气态汞沉积速率.   相似文献   

8.
近年来,大气颗粒态汞对人体健康的危害逐渐凸显。济南是山东省的省会城市,能源消耗量大,工业园区集中。文章以济南市不同功能区域的大气颗粒物为研究对象,对其中的汞含量进行测定。结果表明,监测期间所有供试点中TSP、PM10、PM2.5超标率分别为(GB 3095-2012二级标准):27.8%、38.9%、55.6%,PM2.5超标比率较高,细颗粒物在大气总悬浮颗粒物中占比较高,工业区对颗粒物排放贡献较大。不同颗径颗粒态汞含量不同,TSP汞含量为0.353±0.081ng/m3,PM10汞含量为0.279±0.071 ng/m3,PM2.5汞含量为0.223±0.053 ng/m3。颗粒物中汞的含量比值,PM10占TSP的比值为0.79±0.14,PM2.5占PM10的比为0.81±0.10,颗粒态汞主要存在于细颗粒物中。同时研究还表明,颗粒态汞的质量浓度与颗粒物的质量浓度呈正相关关系,大气颗粒态汞(可吸入颗粒物PM10)的危险系数HQ均小于1。  相似文献   

9.
在镇江市文化商业区和工业区布设两个监测点,采集不同颗粒物粒径中汞,分析了汞元素的浓度水平,并对汞在不同粒径大气颗粒物中的分布进行分析。结果表明,工业区可吸入颗粒物中汞含量高于文化商业区,颗粒态汞主要富集在小颗粒中,细颗粒物中的汞占可吸入颗粒物中的汞的比例为75.0%~85.7%;镇江颗粒物中汞的来源非自然源主要为人为源,且主要与燃煤电厂、石化燃烧、汽车尾气等相关。  相似文献   

10.
为研究冰川融水径流中汞与悬浮颗粒物的变化及其相关关系,于2019年6月~2020年9月在青藏高原东南缘海螺沟冰川融水径流进行为期一年的连续定点采样,测试了样品中汞形态含量和悬浮颗粒物的数量、含量及粒径特征。分析表明,总汞的平均含量为6.96~10.78 ng/L,其中颗粒态汞为4.54~9.14 ng/L,溶解态汞为1.53~2.42 ng/L,与青藏高原及世界其他偏远地区河流汞含量相当。各形态汞与悬浮颗粒物不同特征在不同季节的相关关系差异显著,总汞和颗粒态汞含量与总悬浮颗粒物含量和数量在夏季消融盛期具有突出且一致的正相关关系,但在秋冬季并未显示出正相关,表明前人揭示的冰川补给河流中颗粒物控制汞含量变化的结论具有季节局限性。冰川径流中的汞受水文过程和汞的来源及其在水体中的转化等多因素影响,汞形态含量与悬浮颗粒物不同物理特征在不同季节的差异性可能反映了不同季节汞的来源和传输机制的差异。  相似文献   

11.
胡军 《地球与环境》2014,42(5):683-687
对吸附管离线采样法及高锰酸钾溶液吸收法两种固定源大气汞排放监测方法进行了比较研究。结果表明:由于有更严谨周密的采样过程及质量保证/质量控制过程,吸附管离线采样法监测精度高于高锰酸钾溶液吸收法。吸附管离线采样法在含汞废气低浓度情况下其相对标准偏差为7.88%,而高浓度条件下监测精度明显下降。高锰酸钾溶液吸收法在采样方法上存在一些缺陷,未来该国标方法应重点在采样环节进行修订完善,并亟待建立适合于高浓度固定源含汞废气监测的高锰酸钾溶液吸收法。  相似文献   

12.
海水中COD测定方法研究   总被引:2,自引:0,他引:2  
本文应用碱性高锰酸钾法和微波密封消解法对不同C l-浓度的海水样品进行测定,反映不同C l-浓度对海水COD测定有显著影响。结果显示,海水COD测定用微波密封消解法优于高锰酸钾法。  相似文献   

13.
《水和废水分析方法第四版》中,用过硫酸铵氧化硫酸亚铁胺滴定法测定总铬,此方法检出限为大于1 mg/l,远高出了一般工业废水总铬的测定值,不适用于测定一般工业废水总铬(小于0.5 mg/l)高锰酸钾氧化法测定总铬又易生成棕色的二氧化锰沉淀。因此,采用强酸消解废水样,用过硫酸铵氧化三价铬成六价铬,在硝酸银的催化作用下,以硫酸锰做指示剂,酸溶液中,过硫酸铵氧化三价铬,用二苯碳酰二肼光度法测定,有很好的效果。这样大大降低了方法检出限(0.003 mg/l),易操作,方法简单,准确度高,满足了废水监测的需要。  相似文献   

14.
应用AFS-9530型双道原子荧光光谱法研究土壤样品中砷和汞的联合测定技术,将土壤样品置于(1+1)王水的微波消解体系中进行消解,加入1m L 5%的重铬酸钾溶液保护汞,加入5m L(5%硫脲+5%抗坏血酸)混合液将五价砷还原为三价,以硼氢化钾为还原剂在5%盐酸介质中测定砷和汞,最低检出限为砷0.55μg/L,汞0.30μg/L,回收率砷在93.5%—105.8%之间,汞在85.5%—104.9%之间,满足准确度要求。  相似文献   

15.
采用连续流动分析法测定地表水中高锰酸盐指数,实验测得检出限为0.036 mg/L,并且重点研究了几种不同浓度的高锰酸钾使用液对分析结果的影响,数据证明这其中储备液用量为13.5 ml时的结果最为准确。同时对方法的精密度和准确度进行了验证,并与国标方法(GB 11892-89)进行了比对。  相似文献   

16.
目的:为了建立一种同时快速测定土壤中砷、汞的方法。方法:用微波消解仪对土壤样品进行消解,用AFS-3100双道原子荧光光度计,选择了最佳的仪器条件,及酸度,硼氢化钾浓度,同时测定砷、汞。结果:本法线性关系砷为0ng/mL-10ng/mL,相关系数0.9994。汞为0ng/mL-1.0ng/mL,相关系数为0.9993。检出限砷为0.003ng/mL。汞为0.002ng/mL。结论:本方法操作简单,灵敏度高,快速,便于推广,适于土壤中砷和汞的同时测定。  相似文献   

17.
高锰酸盐指数是一个相对的条件性指标,其测定结果与溶液的酸度、高锰酸盐的浓度、加热温度和时间等有关。因此,测定时必须严格遵守操作规定,使其结果具有可比性。  相似文献   

18.
建立了利用RP91C-RA915M汞分析仪直接测定土壤中总汞的方法。该方法直接固体进样,省去了常规方法加酸消解、赶酸、定容等繁琐的前处理步骤;利用标准土壤绘制工作曲线,无需反复稀释标准储备液配制标准溶液,测定了方法检出限、精密度及准确度。结果表明此方法准确、可靠,是一个比较理想的分析方法。本方法的检出限为0.25μg/kg,相对标准偏差为1.98%~4.92%,标准样品测定准确,加标回收率为92.8%~106%。  相似文献   

19.
高锰酸钾氧化水中乙硫醇的动力学研究   总被引:2,自引:1,他引:1  
刘尧  张晓健  戴吉胜  许欢 《环境科学》2008,29(5):1261-1265
研究了高锰酸钾氧化水中乙硫醇的动力学规律,并考察了高锰酸钾在原水混凝条件下对原水中乙硫醇的去除效果.结果表明,高锰酸钾对乙硫醇的氧化去除效果非常明显,去除率可达到90%以上;高锰酸钾对乙硫醇的氧化过程符合二级反应动力学模型;在高锰酸钾过量的情况下,氧化反应的伪一级动力学常数k'=0.025·[KMnO4]-0.008,再根据所用初始高锰酸钾浓度,得到了二级反应的动力学常数k=0.025 L(min·mg).高锰酸钾在原水混凝条件下对乙硫醇的去除效果劣于纯水条件下的去除效果,在水中其它有机物与高锰酸钾反应条件下高锰酸钾浓度变化的拟合结果与实际情况存在偏差,是产生差异的主要原因.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号