首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dawn chorus is a striking feature of spring mornings and a characteristic behaviour of many bird species, particularly the passerines. Dawn singing has been considered a reliable signal of male quality for mate and rival assessment. Singing is presumed to be relatively costly at dawn both because air temperatures are relatively low and because birds have not fed overnight. Models of optimal daily routine predict the existence of a “dusk chorus” in nocturnal birds, although this prediction has received little empirical attention. Nocturnal birds at dusk may be energy-limited because of a lack of daytime feeding, and singing at dusk may thus ensure signal reliability. Here, we used an observational and experimental approach to study vocal behaviour at dusk and dawn in a nocturnal raptor, the little owl Athene noctua. We assess whether male little owls adjust their vocal behaviour according to feeding stage (i.e. period of the night), ambient air temperature and territorial context (i.e. spontaneous calling behaviour vs elicited calling by intrusion). Across different temperatures, we find that both spontaneous vocal activity and inter-individual variability in call duration increased at dusk, clearly indicating a dusk chorus phenomenon. Results from playback presentations suggest that food, rather than air temperature, is likely to be more constraining at dusk. We discuss how comparing dusk and dawn choruses in nocturnal and diurnal species can provide insights into both mechanistic and functional aspects of signalling behaviour.  相似文献   

2.
Established hypotheses state that the rate of predation on coral reef fish should be highest during crepuscular periods (dawn and dusk) intermediate diurnally, and lowest nocturnally. We examined the relative risk of predation on juvenile French grunts (Haemulon flavolineatum Desmarest) during diurnal, dusk, and nocturnal periods on the fore- and back-reef at Teague Bay, U.S. Virgin Islands in July and August 1996. Tethering-devices recorded the exact amount of time between attaching a prey fish to its tether and subsequent predation on the prey fish. As tethering of prey usually inflates the actual rate of predation, times from our tethering devices were used to establish only the relative predation risk among treatments. During 3-h diurnal and nocturnal tethering experiments, relative predation was significantly higher during the nocturnal period, and differences between side of reef were not significant. In 30-min tethering experiments, which included all three time periods, the relative predation risk was significantly higher during dusk and nocturnal periods than during the diurnal period. Relative predation was not significantly different between the dusk and nocturnal periods, or between side of reef during any time period. The unexpected finding that the diurnal period had the lowest relative risk of predation indicates that the timing of predation events on reefs, as well as the adaptive reasons for nocturnal larval settlement, may need to be re-examined. Received: 11 February 1997 / Accepted: 21 October 1998  相似文献   

3.
Aposematic (warning) signals of prey help predators to recognize the defended distasteful or poisonous prey that should be avoided. The evolution of aposematism in the context of predation has been in the center of modern ecology for a long time. But, the possible roles of aposematic signals in other ecological contexts have been largely ignored. Here we address the role of aposematic signals in competition between prey and predators. Bumblebees use visual and auditory aposematic signals to warn predators about their defenses. For 2 years, we observed competition for nestboxes between chemically defended insects, Bombus ardens (and possibly also Bombus ignitus), and cavity nesting birds (Parus minor and Poecile varius). Bumblebees settled in 16 and 9 % of nestboxes (in 2010 and 2011 breeding seasons, respectively) that contained bird nests at the advanced stage of nest building or at the stage of egg laying. Presence of bumblebees prevented the birds from continuing the breeding activities in the nestboxes, while insects took over the birds’ nests (a form of kleptoparasitism). Playback experiments showed that the warning buzz by bumblebees contributed to the success in ousting the birds from their nests. This demonstrates that aposematic signals may be beneficial also in the context of resource competition.  相似文献   

4.
Intraguild predation (IGP) has been explained in terms of competitor-removal, food-stress and predator-removal hypotheses. Only the first two hypotheses have been fairly well studied. To test the predator-removal hypothesis as a force determining IGP in avian predators, we performed a field experiment to simulate the presence of an IG predator (eagle owl Bubo bubo dummy) in the surrounding of the nests of four potential IG prey (black kite Milvus migrans, red kite Milvus milvus, booted eagle Aquila pennata and common buzzard Buteo buteo). To discard the possibility that an aggressive reaction towards the eagle owl was not related to the presence of the IG predator, we also presented a stuffed tawny owl Strix aluco, which is a potential competitor but cannot be considered an IG predator of the studied diurnal raptors considered in the experiment. While almost always ignoring the tawny owl, raptors chiefly showed an interspecific aggressive behaviour towards their IG predator. Our results seem to support the predator-removal hypothesis, as the IG prey may take advantage of the diurnal inactivity of the IG predator to remove it from their territory. However, the recorded behaviour may be also considered as a special variety of mobbing (i.e. a prey’s counter-strategy against its predator), where the mobber is sufficiently powerful to escalate predator harassment into deliberate killing attempts. In their turn, eagle owls can respond with an IG predatory behaviour aimed at removing IG prey species which are highly aggressive mobbers.  相似文献   

5.
Kimbro DL 《Ecology》2012,93(2):334-344
Prey perception of predators can dictate how prey behaviorally balance the need to avoid being eaten with the need to consume resources, and this perception and consequent behavior can be strongly influenced by physical processes. Physical factors, however, can also alter the density and diversity of predators that pursue prey. Thus, it remains uncertain to what extent variable risk perception and antipredator behavior vs. variation in predator consumption of prey underlie prey-resource dynamics and give rise to large-scale patterns in natural systems. In an experimental food web where tidal inundation of marsh controls which predators access prey, crab and conch (predators) influenced the survivorship and antipredator behavior of snails (prey) irrespective of whether tidal inundation occurred on a diurnal or mixed semidiurnal schedule. Specifically, cues of either predator caused snails to ascend marsh leaves; snail survivorship was reduced more by unrestrained crabs than by unrestrained conchs; and snail survivorship was lowest with multiple predators than with any single predator despite interference. In contrast to these tidally consistent direct consumptive and nonconsumptive effects, indirect predator effects differed with tidal regime: snail grazing of marsh leaves in the presence of predators increased in the diurnal tide but decreased in the mixed semidiurnal tidal schedule, overwhelming the differences in snail density that resulted from direct predation. In addition, results suggest that snails may increase their foraging to compensate for stress-induced metabolic demand in the presence of predator cues. Patterns from natural marshes spanning a tidal inundation gradient (from diurnal to mixed semidiurnal tides) across 400 km of coastline were consistent with experimental results: despite minimal spatial variation in densities of predators, snails, abiotic stressors, and marsh productivity, snail grazing on marsh plants increased and plant biomass decreased on shorelines exposed to a diurnal tide. Because both the field and experimental results can be explained by tidal-induced variation in risk perception and snail behavior rather than by changes in snail density, this study reinforces the importance of nonconsumptive predator effects in complex natural systems and at large spatial scales.  相似文献   

6.
Stochastic dynamic programming (SDP) models predict that males singing to attract a mate should concentrate singing in what has been termed the dawn chorus. This is because male birds should have a variable surplus of fat in the morning that can be used to fuel singing, with the amount of fat available dependent upon such factors as his quality, foraging success and risk of predation. In this manner, the dawn chorus can act as an indicator of male quality in the context of female mate choice. We test a key prediction of SDP models of singing behaviour that males with greater fat levels should sing more. We conducted an experiment where we recorded the dawn chorus of male silvereyes (Zosterops lateralis) on three consecutive days. Each male received supplementary food on the second day, which enabled us to sample his dawn chorus before, during and after food supplementation. We also collected data on the effect of supplementary food on the body mass of silvereyes. As predicted by SDP models, we found that silvereyes sang for a greater proportion of the time after receiving supplementary food. Supplementary food also had a significant effect on the complexity of a male song, indicating that males not only increased the quantity of their song but also the quality of their song when they received extra food. As the provision of supplementary food significantly increased the mass of fed birds, our results support a causal link between male energy reserves and his ability to perform the dawn chorus.  相似文献   

7.
Summary Behavioral resource depression occurs when the behavior of prey individuals changes in response to the presence of a predator, resulting in a reduction of the encounter rate of the predator with its prey. Here I present experimental evidence on the response of two species of gerbils (Gerbillus allenbyi and G. pyramidum) to the presence of barn owls. I conducted the experiments in a large aviary. Both gerbils responded to the presence of barn owl predators by foraging in fewer resource patches (seed trays) and by quitting foraged resource patches at a higher resource harvest rate (giving-up density of resource; GUD). This reduced the amount of time gerbils were exposed to owl predation, and hence the encounter rate of owls with gerbils, i.e., behavioral resource depression. Thus, the presence of owls imposes a foraging cost on gerbils due to risk of predation, and also on the owls themselves due to resource depression. I then examined how resource depression relaxed over time following exposure to owls. In the days following an encounter with the predator, the reduction in foraging activity for both gerbil species eased. Increasing numbers of trays were foraged each day, and GUDs in seed trays declined. The two gerbils differed in their rate of recovery, with G. pyramidum returning to prepredator levels of foraging after 1 or 2 nights and G. allenbyi taking 5 nights or longer. Interspecific differences in recovery rates may be based on differences between the species in vulnerability to predation and/or ability to detect the presence of predators. The differences in recovery rates may be due to optimal memory windows or decay rates, where differences between species are based on risk of predation or on how perceived risk changes with time since a predator was last encountered. Finally, differences between or among competitors in recovery from resource depression may provide foraging opportunities in time for the species which recover most quickly and may have implications for species coexistence.  相似文献   

8.
Numerous studies have examined how predator diets influence prey responses to predation risk, but the role predator diet plays in modulating prey responses remains equivocal. We reviewed 405 predator–prey studies in 109 published articles that investigated changes in prey responses when predators consumed different prey items. In 54 % of reviewed studies, prey responses were influenced by predator diet. The value of responding based on a predator’s recent diet increased when predators specialized more strongly on particular prey species, which may create patterns in diet cue use among prey depending upon whether they are preyed upon by generalist or specialist predators. Further, prey can alleviate costs or accrue greater benefits using diet cues as secondary sources of information to fine tune responses to predators and to learn novel risk cues from exotic predators or alarm cues from sympatric prey species. However, the ability to draw broad conclusions regarding use of predator diet cues by prey was limited by a lack of research identifying molecular structures of the chemicals that mediate these interactions. Conclusions are also limited by a narrow research focus. Seventy percent of reviewed studies were performed in freshwater systems, with a limited range of model predator–prey systems, and 98 % of reviewed studies were performed in laboratory settings. Besides identifying the molecules prey use to detect predators, future studies should strive to manipulate different aspects of prey responses to predator diet across a broader range of predator–prey species, particularly in marine and terrestrial systems, and to expand studies into the field.  相似文献   

9.
Animals utilise various strategies to reduce the risk of predation, including camouflage, warning colours and mimicry, and many of these protective signals promote avoidance behaviour in predators. For example, various species possess paired circular ‘eyespots’, which startle or intimidate predators, preventing or halting an attack. However, little is known of how the efficacy of such signals relates to the context in which they are found, and no studies have tested the relative effectiveness of anti-predator signals when on otherwise camouflaged and conspicuous prey. We find that the protective value of conspicuous wing spots, placed on artificial moth-like targets presented to wild birds in the field, is strongly affected by the attributes of the prey ‘animal’ on which they are found. Wing spots reduced predation when on conspicuous prey but were rendered ineffective when on otherwise camouflaged targets, indeed they increased the risk of predation compared to non-marked camouflaged controls. These results demonstrate how different anti-predator strategies may interact, and that protective signals can switch from being beneficial to costly under different contexts.  相似文献   

10.
Lizards and birds are both popular ”model organisms” in behavioural ecology, but the interactions between them have attracted little study. Given the putative importance of birds as predators of diurnal lizards, it is of considerable interest to know which traits (of lizards as well as birds) influence the outcome of a predatory attempt. We studied predation by giant terrestrial kingfishers (kookaburras, Dacelo novaeguineae: Alcedinidae) on heliothermic diurnal lizards (highland water skinks, Eulamprus tympanum: Scincidae), with particular reference to the role of prey (lizard) size. Our approach was twofold: to gather direct evidence (sizes of lizards consumed in the field, compared to those available) and indirect evidence (size-related shifts in lizard behaviour). We quantified the size structure of a natural population of skinks (determined by an extensive mark-recapture program), and compared it to the sizes of wild lizards taken by kookaburras (determined by analysis of prey remains left at the birds’ nests). Kookaburras showed size-based predation: they preyed mainly on small and medium-sized rather than large lizards in the field. However, the mechanism producing this bias remains elusive. It is not due to any distinctive behavioural attributes (locomotor ability, activity level, habitat usage) of the lizards of the size class disproportionately taken by the kookaburras. The greater vulnerability of subadult lizards may reflect subtle ontogenetic shifts in ecological and behavioural traits, but our data suggest that great caution is needed in inferring patterns of vulnerability to predation from indirect measures based on either the prey or the predator alone. Instead, we need direct observations on the interaction between the two. Received: 30 May 2000 / Revised: 29 July 2000 / Accepted: 26 August 2000  相似文献   

11.
We evaluated the effects of potential predators from intertidal habitats on Strongylocentrotus purpuratus survival using laboratory experiments and assessed abundances of main predatory species along the Pacific coast of North America. The interactive effects of urchins’ and predators’ sizes in mediating predation were quantified. Habitat complexity (substrate pits, adult spine canopy) was manipulated to examine its effects on predation of most susceptible individuals (<14 mm). Pachygrapsus crassipes was identified as a major predator of urchins up to ≈30 mm. A positive effect of predator size on consumption of progressively larger urchins was detected, probably due to a mechanical limitation on crabs’ ability to consume large prey. Larger claws of males with respect to females of comparable sizes facilitated the handling of larger prey. Substrate refuges significantly reduced mortality on juvenile urchins. These results show that crab predation may be important in organizing intertidal communities, despite multiple ecological mechanisms promoting sea urchin survival.  相似文献   

12.
Preisser EL  Orrock JL  Schmitz OJ 《Ecology》2007,88(11):2744-2751
Predators can affect prey populations through changes in traits that reduce predation risk. These trait changes (nonconsumptive effects, NCEs) can be energetically costly and cause reduced prey activity, growth, fecundity, and survival. The strength of nonconsumptive effects may vary with two functional characteristics of predators: hunting mode (actively hunting, sit-and-pursue, sit-and-wait) and habitat domain (the ability to pursue prey via relocation in space; can be narrow or broad). Specifically, cues from fairly stationary sit-and-wait and sit-and-pursue predators should be more indicative of imminent predation risk, and thereby evoke stronger NCEs, compared to cues from widely ranging actively hunting predators. Using a meta-analysis of 193 published papers, we found that cues from sit-and-pursue predators evoked stronger NCEs than cues from actively hunting predators. Predator habitat domain was less indicative of NCE strength, perhaps because habitat domain provides less reliable information regarding imminent risk to prey than does predator hunting mode. Given the importance of NCEs in determining the dynamics of prey communities, our findings suggest that predator characteristics may be used to predict how changing predator communities translate into changes in prey. Such knowledge may prove particularly useful given rates of local predator change due to habitat fragmentation and the introduction of novel predators.  相似文献   

13.
Malaria and risk of predation: a comparative study of birds   总被引:5,自引:0,他引:5  
Møller AP  Nielsen JT 《Ecology》2007,88(4):871-881
Predators have been hypothesized to prey on individuals in a poor state of health, although this hypothesis has only rarely been examined. We used extensive data on prey abundance and availability from two long-term studies of the European Sparrowhawk (Accipiter nisus) and the Eurasian Goshawk (Accipiter gentilis) to quantify the relationship between predation risk of different prey species and infection with malaria and other protozoan blood parasites. Using a total of 31 745 prey individuals of 65 species of birds from 1709 nests during 1977-1997 for the Sparrowhawk and a total of 21 818 prey individuals of 76 species of birds from 1480 nests for the Goshawk during 1977-2004, we show that prey species with a high prevalence of blood parasites had higher risks of predation than species with a low prevalence. That was also the case when a number of confounding variables of prey species, such as body mass, breeding sociality, sexual dichromatism, and similarity among species in risk of predation due to common descent, were controlled in comparative analyses of standardized linear contrasts. Prevalence of the genera Haemoproteus, Leucocytozoon, Plasmodium, and Trypanosoma were correlated with each other, and we partitioned out the independent effects of different protozoan genera on predation risk in comparative analyses. Prevalence of Haemoproteus, Leucocytozoon, and Plasmodium accounted for interspecific variation in predation risk for the two raptors. These findings suggest that predation is an important factor affecting parasite-host dynamics because predators tend to prey on hosts that are more likely to be infected, thereby reducing the transmission success of parasites. Furthermore, this study demonstrates that protozoan infections are a common cause of death for hosts mediated by increased risk of predation.  相似文献   

14.
Because conspicuous morphology such as colorful plumage may increase predation risk, we aimed to see if variation in plumage coloration could explain variation in avian anti-predator behavior. We included several measures of plumage coloration: human perception of vividness from images in field guides, total intensity from reflectance spectra of museum skins, contrasts calculated from physiological models of these spectra parameterized for both raptors and humans, chroma, and spectral saturation. We investigated how well these measurements predicted risk assessment in ten species of birds in St. John, U.S. Virgin Islands. We quantified how each species responded to playbacks of a predator’s calls and compared this response to that elicited by songs from a non-predatory, sympatric bird. We found that human-determined measures of vividness best predicted anti-predator responses of birds—more vividly colored species responded more to predators than duller species. No spectrophotometric variable explained variation in species reactions to a predator call. Our results suggest that vivid birds may compensate for their conspicuousness by being more responsive to the sound of predators and that more work is needed to better evaluate how animal coloration is quantified in comparative studies.  相似文献   

15.
Predator–prey relationships provide an excellent opportunity to study coevolved adaptations. Decades of theoretical and empirical research have illuminated the various behavioral adaptations exhibited by prey animals to avoid detection and capture, and recent work has begun to characterize physiological adaptations, such as immune reactions, metabolic changes, and hormonal responses to predators or their cues. A 2-year study quantified the activity budgets and antipredator responses of adult Belding’s ground squirrels (Spermophilus beldingi) living in three different California habitats and likely experiencing different predation pressures. At one of these sites, which is visually closed and predators and escape burrows are difficult to see, animals responding to alarm calls remain alert longer and show more exaggerated responses than adults living in two populations that likely experience less intense predation pressure. They also spend more time alert and less time foraging than adults at the other two sites. A 4-year study using noninvasive fecal sampling of cortisol metabolites revealed that S. beldingi living in the closed site also have lower corticoid levels than adults at the other two sites. The lower corticoids likely reflect that predation risk at this closed site is predictable, and might allow animals to mount large acute cortisol responses, facilitating escape from predators and enhanced vigilance while also promoting glucose storage for the approaching hibernation. Collectively, these data demonstrate that local environments and perceived predation risk influence not only foraging, vigilance, and antipredator behaviors, but adrenal functioning as well, which may be especially important for obligate hibernators that face competing demands on glucose storage and mobilization.  相似文献   

16.
Urban MC 《Ecology》2007,88(10):2587-2597
Growth is a critical ecological trait because it can determine population demography, evolution, and community interactions. Predation risk frequently induces decreased foraging and slow growth in prey. However, such strategies may not always be favored when prey can outgrow a predator's hunting ability. At the same time, a growing gape-limited predator broadens its hunting ability through time by expanding its gape and thereby creates a moving size refuge for susceptible prey. Here, I explore the ramifications of growing gape-limited predators for adaptive prey growth. A discrete demographic model for optimal foraging/growth strategies was derived under the realistic scenario of gape-limited and gape-unconstrained predation threats. Analytic and numerical results demonstrate a novel fitness minimum just above the growth rate of the gape-limited predator. This local fitness minimum separates a slow growth strategy that forages infrequently and accumulates low but constant predation risk from a fast growth strategy that forages frequently and experiences a high early predation risk in return for lower future predation risk and enhanced fecundity. Slow strategies generally were advantageous in communities dominated by gape-unconstrained predators whereas fast strategies were advantageous in gape-limited predator communities. Results were sensitive to the assumed relationships between prey size and fecundity and between prey growth and predation risk. Predator growth increased the parameter space favoring fast prey strategies. The model makes the testable predictions that prey should not grow at the same rate as their gape-limited predator and generally should grow faster than the fastest growing gape-limited predator. By focusing on predator constraints on prey capture, these results integrate the ecological and evolutionary implications of prey growth in diverse predator communities and offer an explanation for empirical growth patterns previously viewed to be anomalies.  相似文献   

17.
Madin EM  Gaines SD  Warner RR 《Ecology》2010,91(12):3563-3571
The indirect, ecosystem-level consequences of ocean fishing, and particularly the mechanisms driving them, are poorly understood. Most studies focus on density-mediated trophic cascades, where removal of predators alternately causes increases and decreases in abundances of lower trophic levels. However, cascades could also be driven by where and when prey forage rather than solely by prey abundance. Over a large gradient of fishing intensity in the central Pacific's remote northern Line Islands, including a nearly pristine, baseline coral reef system, we found that changes in predation risk elicit strong behavioral responses in foraging patterns across multiple prey fish species. These responses were observed as a function of both short-term ("acute") risk and longer-term ("chronic") risk, as well as when prey were exposed to model predators to isolate the effect of perceived predation risk from other potentially confounding factors. Compared to numerical prey responses, antipredator behavioral responses such as these can potentially have far greater net impacts (by occurring over entire assemblages) and operate over shorter temporal scales (with potentially instantaneous response times) in transmitting top-down effects. A rich body of literature exists on both the direct effects of human removal of predators from ecosystems and predators' effects on prey behavior. Our results draw together these lines of research and provide the first empirical evidence that large-scale human removal of predators from a natural ecosystem indirectly alters prey behavior. These behavioral changes may, in turn, drive previously unsuspected alterations in reef food webs.  相似文献   

18.
In the ongoing evolutionary arms race between predators and their prey, successful escape from the predator leads to the evolution of improved escape tactics in prey, but also predators become more effective in following and attacking the prey. Antipredatory behavior of prey is considered to be the strongest towards their most dangerous predators. However, prey species can differ both in vulnerability and efficiency of escape to a shared predator. We studied escape reactions of two vole species, the bank vole (Myodes glareolus) and the field vole (Microtus agrestis), under a simulated predation risk of the least weasel (Mustela nivalis nivalis). We conducted a laboratory experiment where a vole was given a possibility to escape from a weasel by fleeing to a horizontal tunnel or climbing the tree. Subsequently to the vole escape decision, we released a weasel to the same tunnel system to test how the weasel succeeded in following the vole. Weasel presence changed the behavior of voles as especially bank voles escaped by climbing. Instead, the majority of field voles fled into the ground-layer tunnel. The different escape tactics of the voles affected the success of the weasel, because climbing voles were less often successfully followed. We suggest that the difference in escape tactics has evolved as an adaptation to different habitats; meadow-exploiting field voles using ground-level escape while bank voles living in three-dimensional forest habitat frequently use arboreal escape tactics. This is likely to lead to different habitat-dependent vulnerabilities to predation in Microtus and Myodes vole species.  相似文献   

19.
The ability to acquire information about predators allows prey to better balance threat-sensitive tradeoffs by responding only to ecologically relevant predation threats. However, predation risk is highly variable through time and responding to predators that no longer represent a threat would likely prove costly to prey. While a wealth of studies have examined the way in which prey learn, little attention has been paid to retention of acquired information. Recent studies suggest that retention is indeed plastic and shaped by a suite of intrinsic factors such as strength of initial conditioning and individual growth rate. Here, we investigated if the duration of retention of acquired information is influenced by individual behavioral tactics (i.e., ‘personality’). We recorded latency to escape an opaque acclimation chamber of juvenile rainbow trout (Oncorhynchus mykiss) as a measure of behavioral tactic. We then immediately conditioned individual trout to recognize pumpkinseed (Lepomis gibbosus) and tested for recognition 24 h or 8 days postconditioning. Our results demonstrate that while shy versus bold trout exhibited no difference in the strength of conditioned response to pumpkinseed odor during conditioning trials or when tested for recognition 24 h postconditioning, there was a significant effect of individual behavioral tactic on the retention of learned predator recognition. While shy trout continued to exhibit a learned response to pumpkinseed odor when tested 8 days postconditioning, bold trout were not different from our pseudoconditioned controls. These data suggest that the behavioral tactic employed at the time of conditioning influences the ‘memory window’ of acquired information.  相似文献   

20.
Foraging theory predicts that animals will adjust their foraging behavior in order to maximize net energy intake and that trade-offs may exist that can influence their behavior. Although substantial advances have been made with respect to the foraging ecology of large marine predators, there is still a limited understanding of how predators respond to temporal and spatial variability in prey resources, primarily due to a lack of empirical studies that quantify foraging and diving behavior concurrently with characteristics of prey fields. Such information is important because changes in prey availability can influence the foraging success and ultimately fitness of marine predators. We assessed the diving behavior of juvenile female harbor seals (Phoca vitulina richardii) and prey fields near glacial ice and terrestrial haulout sites in Glacier Bay (58°40′N, ?136°05′W), Alaska. Harbor seals captured at glacial ice sites dived deeper, had longer dive durations, lower percent bottom time, and generally traveled further to forage. The increased diving effort for seals from the glacial ice site corresponded to lower prey densities and prey at deeper depths at the glacial ice site. In contrast, seals captured at terrestrial sites dived shallower, had shorter dive durations, higher percent bottom time, and traveled shorter distances to access foraging areas with much higher prey densities at shallower depths. The increased diving effort for seals from glacial ice sites suggests that the lower relative availability of prey may be offset by other factors, such as the stability of the glacial ice as a resting platform and as a refuge from predation. We provide evidence of differences in prey accessibility for seals associated with glacial ice and terrestrial habitats and suggest that seals may balance trade-offs between the costs and benefits of using these habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号