首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
光催化与生物技术联用工艺处理油漆废气中试研究   总被引:2,自引:0,他引:2  
光催化与生物技术联用工艺用于油漆生产、加工过程有机废气的现场处理,中试实验结果表明:油漆生产、加工过程现场的主要污染物是甲苯、乙苯、间/对二甲苯和邻二甲苯等苯系物,浓度在27~55 mg/m3之间。单独使用光催化和微生物技术现场处理这些苯系物,其去除效率都不很高。虽然在中试开始阶段光催化对苯系物的平均去除效率达到了86.2%,在中试稳定期,光催化技术对苯系物的平均去除效率却只有67.6%,而生物滴滤床在成功挂膜之后对现场有机废气的平均去除效率也仅为67.5%。但是将这两种工艺联合使用之后,在中试稳定期该组合工艺对苯系物的平均去除效率可以达到99.2%。  相似文献   

2.
挥发性有机物(VOCs)在包气带中的迁移扩散是土壤和地下水中可挥发污染物自然衰减的重要机制,也与蒸气入侵暴露和风险评估密切相关。采用微宇宙实验对12种挥发性石油烃(正戊烷、正己烷、正庚烷、正辛烷、环戊烷、环己烷、环庚烷、环辛烷、苯、甲苯、乙苯、对二甲苯)在4种土壤(黑土、黄土、红土、石英砂)中的气相自然衰减机制和气态生物降解动力学规律进行了研究。结果表明,正构烷烃、环烷烃和苯系物蒸气在4种土壤中的气相自然衰减去除率都遵循黑土>黄土>红土>石英砂的规律;黑土中生物降解对污染物去除率的贡献高于黄土,而红土和石英砂中的生物降解速率极低;4种苯系物的自然衰减和生物降解潜力远高于正构烷烃和环烷烃;苯系物气相生物降解速率排序为:甲苯>苯>乙苯>对二甲苯。本研究结果可为蒸气入侵定量风险评估和石油污染场地自然衰减速率定量评估提供参考。  相似文献   

3.
Fenton和类Fenton氧化处理地下水中BTEX及其动力学   总被引:2,自引:1,他引:1  
研究比较Fenton试剂和类Fenton试剂氧化处理地下水中苯、甲苯、乙苯和二甲苯(BTEX)的效果及动力学.结果表明,Fenton氧化处理BTEX较类Fenton效果好,且反应过程中体系均处于强氧化环境,pH值维持在3左右;Fenton和类Fenton氧化去除BTEX过程均符合二级反应动力学方程:1/C=kt+1/C...  相似文献   

4.
为探究垃圾焚烧飞灰(以下简称飞灰)添加对沥青铺路烟气中苯系物的影响,实验室模拟研究了不同的温度区间(50~80、80~145、145~165、165~200、200℃恒温)及飞灰添加量(质量分数分别为0、3.0%、4.0%、5.0%)条件下,沥青烟气中苯系物的释放规律。结果表明:温度对苯系物的释放有显著的影响,苯系物释放浓度随着温度的增加而增加,在50~80、80~145、145~165、165~200℃及200℃恒温5个温度区间内苯系物的平均浓度较上一区间分别增加了1.02、2.22、0.50、1.08倍。实验中飞灰的添加对沥青烟气中苯系物的释放浓度无显著影响,但对各单体影响不同。当飞灰添加量为3.0%时,苯、乙苯、二甲苯(间二甲苯、对二甲苯、邻二甲苯)、三甲苯(1,3,5-三甲苯、1,2,4-三甲苯、1,2,3-三甲苯)释放浓度增加了16.78%、20.65%、37.69%、9.72%,随着飞灰添加量的继续增加其浓度增幅逐渐减少。  相似文献   

5.
可吸附生物反应墙修复地下水中BTEX   总被引:1,自引:0,他引:1  
在研究填充介质配比的基础上,考察中砂-膨润土-微生物构成的可吸附生物反应墙对模拟地下水中不同浓度BTEX(苯、甲苯、乙苯和二甲苯)的去除效果,并通过添加硝酸盐考察电子受体对地下水BTEX去除效率的贡献。结果表明,膨润土/中砂的最佳体积比为20∶80,此时渗透性反应墙的渗透系数为2.01×10-5m/s,有效孔隙率为16.71%。添加硝酸盐的生物反应墙对不同浓度下BTEX的去除率较为稳定,没有添加硝酸盐的对照组对BTEX的去除效果波动较大。在进水浓度分别为6、8和10 mg/L时,添加硝酸盐的生物反应墙和对照组对BETX的总去除效率分别约为94%、91%,96%、90%,97%和87%。可吸附生物反应墙对BTEX有较好的去除效果,添加硝酸盐对去除BTEX有一定的促进作用。  相似文献   

6.
利用活性炭吸附/二硫化碳解吸—气相色谱法对西安市具有代表性的大庆路和长安路两处交通主干道进行环境空气监测,分析了冬季和夏季的苯、甲苯、乙苯、二甲苯(BTEX)等苯系物的浓度水平和日变化特征。结果表明,大庆路和长安路环境空气中总BTEX平均质量浓度冬季分别为55.27、46.01μg/m3,夏季分别为32.54、20.32μg/m3。两路段最主要的BTEX均为苯和甲苯。BTEX日变化趋势研究显示,冬季呈现早中晚3个高峰,而夏季只有早晚两个高峰;长安路由于地处西安市繁华的商业区,晚高峰出现的比大庆路晚。  相似文献   

7.
通过监测杭州市公交中不同类型公交车、出租车流动微环境内的苯系物(BTEX)浓度,对杭州市公共交通流动微环境中的BTEX的致癌风险进行了评估.结果表明,杭州市公交流动微环境中的BTEX均值为72.36 μg/m3,其中苯、甲苯、乙苯、二甲苯均值分别为15.47、23.52、6.11、17.78 μg/m3.公交车流动微环境中的苯浓度低于出租车流动微环境中的.杭州市公交流动微环境中BTEX中的苯、甲苯、乙苯、二甲苯体积比约为3:4:1:3,接近汽车尾气中这4者的相应比,交通工具类型、所用的动力、通风状况等对公交流动微环境中的BTEX浓度均有不同程度的影响.杭州市公交流动微环境中BTEX对不同人群的致癌风险为1.26×10-6~5.92×10-6,超过了美国环境保护署(EPA)制定的致癌风险限值.相对来说,乘坐出租车的致癌风险是乘坐公交车的1.35倍.  相似文献   

8.
汽油中典型苯系物(苯、甲苯、乙苯和3种二甲苯的同分异构体,统称BTEX)在含水介质中的溶解情况直接关系到下游BTEX污染程度和污染范围,是汽油泄漏区制定污染场地修复计划的关键资料。为探究汽油BTEX在静止水相中的溶解情况及乙醇对BTEX溶解的影响,利用微元体开展了传统汽油和乙醇汽油(乙醇体积分数10%)静态溶解批实验。结果表明:在静止水相中,油水体积比为1∶70的条件下,水相中BTEX浓度在前9天呈线性快速上升,第13天后进入平衡状态,平衡质量浓度为119.63~130.76mg/L,溶解速度为8.39~13.75mg/(L·d)。乙醇对汽油中的BTEX有一定增溶作用,但效果不明显,且BTEX在乙醇汽油中的溶解速度比传统汽油慢。砂层对BTEX存在吸附作用,可以增强BTEX的溶解。Raoult定律能较好地预测汽油BTEX在静止水相中的溶解,其中高溶解度组分苯和甲苯的实测浓度与预测浓度较为接近。  相似文献   

9.
采用O_3氧化法深度处理印染废水尾水。单因素实验结果表明,提高O_3浓度有利于TOC与UV254的去除,提高至4 mg·L~(-1)后TOC与UV254去除率不再升高;TOC与UV254去除率随反应进程逐渐升高,前10 min为快速反应阶段,此后为慢速分解阶段;弱碱性环境有利于O_3的氧化作用。采用响应面法获得了O_3氧化在最佳条件(pH 8.76,O3浓度4.88mg·L~(-1),反应60 min)下印染废水尾水TOC和UV254去除率分别为22.85%和76.48%。TOC去除率远大于UV254去除率。该显著差异表明,O_3能有效破坏含C=C和C=O双键的简单芳香族化合物结构,但对有机物矿化能力较差。GC-MS分析结果表明,印染废水尾水中除含大量长链烷烃、卤代烷烃、环状烷烃外,还含有以甲苯,二甲苯为主以及少量难降解的萘、菲等苯系物;经O_3氧化后,水中仅存少量残留二甲苯,其余苯系物均未检出。  相似文献   

10.
混合生活垃圾恶臭特性及评估方法研究   总被引:1,自引:0,他引:1  
总结了不同区域、不同时段生活垃圾的恶臭特性,发现恶臭特性受垃圾组分、处理处置工艺等因素影响较大,垃圾中转站的主要恶臭组分为乙酸乙酯、甲苯、乙苯等挥发性有机物(VOCs)及氨气,填埋场恶臭组分中含硫化合物和含氧化合物浓度高,堆肥场恶臭组分中苯系物和烃类浓度较高,焚烧厂恶臭组分主要为苯系物。基于复杂多变的生活垃圾恶臭特性,采用综合评分法评价恶臭的环境影响程度,对已报道的生活垃圾恶臭组分进行综合评价,发现生活垃圾降解过程释放的恶臭组分中,二甲二硫、硫化氢、甲硫醇、萘、1,3,5-三甲苯、甲硫醚、甲苯、乙苯、对二甲苯和α-蒎烯等是混合生活垃圾优先控制的恶臭污染物。  相似文献   

11.
This study addresses the issues related to decontamination of marine beach sand accidentally contaminated by petroleum products. Sorption and desorption of BTEX (i.e., benzene, toluene, ethylbenzene, and xylene) onto the sand from Uran Beach, located near the city of Mumbai, India, were studied, and isotherms were determined using the bottle point method to estimate sorption coefficients. Alternatively, QSARs (i.e., quantitative structure activity relationships) were developed and used to estimate the sorption coefficients. Experiments for kinetics of volatilization as well as for kinetics of sorption and desorption in the presence of volatilization were conducted in a fabricated laboratory batch reactor. A mathematical model describing the fate of volatile hydrophobic organic pollutants like BTEX (via sorption and desorption in presence of volatilization) in a batch sediment-washing reactor was proposed. The experimental kinetic data were compared with the values predicted using the proposed models for sorption and desorption, and the optimum values of overall mass transfer coefficients for sorption (K(s)a(s)) and desorption (K(d)a(d)) were estimated. This was achieved by minimization of errors while using the sorption coefficients (Kp) obtained from either laboratory isotherm studies or the QSARs developed in the present study. Independent experimental data were also collected and used for calibration of the model for volatilization, and the values of the overall mass transfer coefficient for volatilization (K(g)a(g)) were estimated for BTEX. In these exercises of minimization of errors, comparable cumulative errors were obtained from the use of Kp values derived from experimental isotherms and QSARs.  相似文献   

12.
ABSTRACT

This study addresses the issues related to decontamination of marine beach sand accidentally contaminated by petroleum products. Sorption and desorption of BTEX (i.e., benzene, toluene, ethylbenzene, and xylene) onto the sand from Uran Beach, located near the city of Mumbai, India, were studied, and isotherms were determined using the bottle point method to estimate sorption coefficients. Alternatively, QSARs (i.e., quantitative structure activity relationships) were developed and used to estimate the sorption coefficients. Experiments for kinetics of volatilization as well as for kinetics of sorption and desorption in the presence of volatilization were conducted in a fabricated laboratory batch reactor. A mathematical model describing the fate of volatile hydrophobic organic pollutants like BTEX (via sorption and desorption in presence of volatilization) in a batch sediment-washing reactor was proposed. The experimental kinetic data were compared with the values predicted using the proposed models for sorption and desorption, and the optimum values of overall mass transfer coefficients for sorption (Ksas) and desorption (Kdad) were estimated.This was achieved by minimization of errors while using the sorption coefficients (Kp) obtained from either laboratory isotherm studies or the QSARs developed in the present study. Independent experimental data were also collected and used for calibration of the model for volatilization,and the values of the overall mass transfer coefficient for volatilization (Kgag) were estimated for BTEX. In these exercises of minimization of errors, comparable cumulative errors were obtained from the use of Kp values derived from experimental isotherms and QSARs.  相似文献   

13.
Sulfur hexafluoride (SF6) tracer was used in a series of the experiments to simulate emissions of benzene, toluene, ethyl-benzene, and xylenes (BTEX) from a refinery wastewater basin. The ratio of the measured tracer release to the ambient tracer concentration established a dilution factor which was then used to calculate the mass flux of BTEX from the wastewater basin using the ambient BTEX concentration data. Measured fluxes of BTEX varied from 7 g/min to 70 g/min.

The CHEMDAT7 air emissions model was then used to predict emissions for comparison with the emissions measured using the tracer flux simulation. CHEMDAT7 typically overpredicted total measured BTEX emissions by factors of twelve to seventeen. The degree of overprediction varied both by the individual compound and the module of CHEMDAT7 used to predict emission fluxes.  相似文献   

14.
地下水中BTEX的原位生物修复研究进展   总被引:2,自引:0,他引:2  
BTEX是苯、甲苯、乙苯和二甲苯的统称,存在于原油和石油产品中,其作为化工原料,广泛应用于农药、塑料及合成纤维等制造业.BTEX已成为地下水中普遍存在的污染物,自然衰减或生物修复工程已成功应用于地下水中BTEX的去除.自然衰减受BTEX污染的地下水具有良好的效果,但相比之下,生物修复工程更快、更有效.综述了在好氧和厌氧条件下,地下水中BTEX原位生物修复过程的微生物降解机制.  相似文献   

15.
Biofiltration of gasoline vapor by compost media   总被引:2,自引:0,他引:2  
Gasoline vapor was treated using a compost biofilter operated in upflow mode over 4 months. The gas velocity was 6 m/h, yielding an empty bed retention time (EBRT) of 10 min. Benzene, toluene, ethylbenzene and xylene (BTEX) and total petroleum hydrocarbon (TPH) removal efficiencies remained fairly stable approximately 15 days after biofilter start-up. The average removal efficiencies of TPH and BTEX were 80 and 85%, respectively, during 4 months of stable operation. Biodegradation portions of the treated TPH and BTEX were 60 and 64%, respectively. When the influent concentration of TPH was less than 7800 mg TPH/m3, approximately 50% of TPH in the gas stream was removed in the lower half of the biofilter. When the influent concentration of BTEX was less than 720 mg BTEX/m3, over 75% of BTEX in the gas stream was removed in the lower half of the biofilter. Benzene removal efficiency was the lowest among BTEX. A pressure drop could not be detected over a 1-m bed height at a gas velocity of 6 m/h after approximately 4 months of operation. Results demonstrated that BTEX in gasoline vapor could be treated effectively using a compost biofilter.  相似文献   

16.
Air sparging and soil vapor extraction (AS/SVE) are innovative remediation techniques that utilize volatilization and microbial degradation to remediate petroleum spills from soils and groundwater. This in situ study investigated the use of AS/SVE to remediate a gasoline spill from a leaking underground storage tank (UST) in the low permeability, clayey soil of the Appalachian Piedmont. The objectives of this study were to evaluate AS/SVE in low permeability soils by quantifying petroleum mass removal rates, monitoring vadose zone contaminant levels, and comparing the mass extraction rates of continuous AS/SVE to 8 and 24 h pulsed operation. The objectives were met by collecting AS/SVE exhaust gas samples and vadose zone air from multi-depth soil vapor probes. Samples were analyzed for O2, CO2, BTEX (benzene, toluene, ethylbenzene, xylene), and total combustible hydrocarbon (TCH) concentrations using portable hand meters and gas chromatography. Continuous AS/SVE was effective in removing 608 kg of petroleum hydrocarbons from low permeability soil in 44 days (14.3 kg day−1). Mass removal rates ranged from 2.6 times higher to 5.1 times lower than other AS/SVE studies performed in sandy sediments. BTEX levels in the vadose zone were reduced from about 5 ppm to 1 ppm. Ten pulsed AS/SVE tests removed 78 kg in 23 days and the mean mass removal rate (17.6 kg day−1) was significantly higher than the last 15 days of continuous extraction. Pulsed operation may be preferable to continuous operation because of increased mass removal and decreased energy consumption.  相似文献   

17.
Revealing source signatures in ambient BTEX concentrations   总被引:2,自引:0,他引:2  
Management of ambient concentrations of Volatile Organic Compounds (VOCs) is essential for maintaining low ozone levels in urban areas where its formation is under a VOC-limited regime. The significant decrease in traffic-induced VOC emissions in many developed countries resulted in relatively comparable shares of traffic and non-traffic VOC emissions in urban airsheds. A key step for urban air quality management is allocating ambient VOC concentrations to their pertinent sources. This study presents an approach that can aid in identifying sources that contribute to observed BTEX concentrations in areas characterized by low BTEX concentrations, where traditional source apportionment techniques are not useful. Analysis of seasonal and diurnal variations of ambient BTEX concentrations from two monitoring stations located in distinct areas reveal the possibility to identify source categories. Specifically, the varying oxidation rates of airborne BTEX compounds are used to allocate contributions of traffic emissions and evaporative sources to observed BTEX concentrations.  相似文献   

18.
Cho J  Zein MM  Suidan MT  Venosa AD 《Chemosphere》2007,68(2):266-273
The biodegradability of alkylate compounds in serum bottles was investigated in the presence and absence of ethanol or benzene, toluene, ethylbenzene, and p-xylene (BTEX). The biomass was acclimated to three different alkylates, 2,3-dimethylpentane, 2,4-dimethylpentane and 2,2,4-trimethylpentane in porous pot reactors. The alkylates were completely mineralized in all three sets of experiments. They degraded more slowly in the presence of BTEX than in their absence because BTEX inhibited the microbial utilization of alkylates. However, in the presence of ethanol, their slower biodegradation was not related to inhibition by the ethanol. Throughout the experiments alkylates, ethanol, and BTEX concentrations did not change in the sterile controls.  相似文献   

19.
The concentrations of the aromatic hydrocarbons benzene, toluene, ethylbenzene and the isomeric xylenes (BTEX) have been determined in the indoor air of 115 private non-smoker homes (∼380 individual rooms) situated in areas with an extreme traffic situation, i.e. in city streets (street canyons) with high traffic density and in rural areas with hardly any traffic at all. The influence of the traffic on the indoor concentration was apparent in the high traffic area. In order to identify other factors influencing the BTEX concentrations, the data and additional questionnaires were analyzed by univariate and multivariate analysis. The analysis was supplemented by some case studies. It is shown that meteorology (the seasons), the type of room (e.g. living room versus bedroom), the ventilation and, in particular, garages in the house strongly influence the indoor concentration of BTEX. Thus, the indoor BTEX level is significantly higher in winter than in summer. Moreover, garages with a connecting door to the living quarters lead to high indoor concentrations of aromatic hydrocarbons in these rooms. In addition, the storage of solvents and hobby materials, and also the presence of smoking guests increase the BTEX level. If rooms are directly heated by coal or wood, the BTEX level is higher compared to the use of gas heating. Surprisingly, no correlation was found between the building materials used and the BTEX level. Case studies were carried out for two homes with an integrated garage (and a connecting door to the living rooms) and for seven homes where redecoration work was carried out during sampling. In both instances, a pronounced increase was observed in the BTEX concentration.  相似文献   

20.
Lee MR  Chang CM  Dou J 《Chemosphere》2007,69(9):1381-1387
A trace analytical method of benzene, toluene, ethylbenzene and xylenes (BTEX) in water has been developed by using headspace solid-phase microextraction (HS-SPME) coupled to cryo-trap gas chromatography-mass spectrometry (GC-MS). The chromatographic peak shape for BTEX was improved by using cryo-trap equipment. The HS-SPME experimental procedures to extract BTEX from water were optimized with a 75 microm carboxen/polydimethylsiloxane (CAR/PDMS)-coated fiber at a sodium chloride concentration of 267 g l(-1), extraction for 15 min at 25 degrees C and desorption at 290 degrees C for 2 min. Good linearity was verified in a range of 0.0001-50 microg l(-1) for each analyte (r(2)=0.996-0.999). The limits of detection (LODs) of BTEX in water reached at sub-ng l(-1) levels. LODs of benzene, toluene, ethylbenzene, m/p-xylene and o-xylene were 0.04, 0.02, 0.05, 0.01 and 0.02 ng l(-1), respectively. The proposed analytical method was successfully used for the quantification of trace BTEX in ground water. The results indicate that HS-SPME coupled to cryo-trap GC-MS is an effective tool for analysis of BTEX in water samples at the sub-ng l(-1) level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号