首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

This study projected the future temperature change for Egypt during the late of this century (2071–2100) for three representative concentration pathways (RCP2.6, RCP4.5, and RCP8.5), by correcting regional climate model (RCM) simulations of average, maximum, and minimum daily temperature with reference to observed data of 26 stations. Four commonly used methods of bias correction have been applied and evaluated: linear scaling, variance scaling, and theoretical and empirical quantile mapping. The compromise programing results of the applied evaluation criteria show that the best method is the variance scaling, and thus it was applied to transfer the correction factor to the projections. All temperature indices are expected to increase significantly under all scenarios and reach the highest record by the end of the century, i.e., the expected increase in average, maximum, and minimum temperature ranges between 4.08–7.41 °C, 4.55–7.89 °C, and 3.88–7.23 °C, respectively. The largest temperature rise will occur in the summer, with the highest increase in the maximum (minimum) temperature of 10.9 °C (10 °C) in July and August under RCP8.5. The maximum (minimum) winter temperature, on the other hand, will drop by a maximum of 2 °C (1.35 °C) under RCP2.6. The Western Desert and Upper Egypt are the regions most affected by climate change, while the northern region of Egypt is the least affected. These findings would help in impact assessment and adaptation strategies and encourage further investigation to evaluate various climate models in order to obtain a comprehensive assessment of the climate change impacts on different hydrometeorological processes in Egypt.

  相似文献   

2.
Tao F  Yokozawa M  Hayashi Y  Lin E 《Ambio》2003,32(4):295-301
The terrestrial water cycle and the impact of climate change are critical for agricultural and natural ecosystems. In this paper, we assess both by running a macro-scale water balance model under a baseline condition and 2 General Circulation Model (GCM)-based climate change scenarios. The results show that in 2021-2030, water demand will increase worldwide due to climate change. Water shortage is expected to worsen in western Asia, the Arabian Peninsula, northern and southern Africa, northeastern Australia, southwestern North America, and central South America. A significant increase in surface runoff is expected in southern Asia and a significant decrease is expected in northern South America. These changes will have implications for regional environment and socioeconomics.  相似文献   

3.
Possible effects of climate change on air quality are studied for two urban sites in the UK, London and Glasgow. Hourly meteorological data were obtained from climate simulations for two periods representing the current climate and a plausible late 21st century climate. Of the meteorological quantities relevant to air quality, significant changes were found in temperature, specific humidity, wind speed, wind direction, cloud cover, solar radiation, surface sensible heat flux and precipitation. Using these data, dispersion estimates were made for a variety of single sources and some significant changes in environmental impact were found in the future climate. In addition, estimates for future background concentrations of NOx, NO2, ozone and PM10 upwind of London and Glasgow were made using the meteorological data in a statistical model. These showed falls in NOx and increases in ozone for London, while a fall in NO2 was the largest percentage change for Glasgow. Other changes were small. With these background estimates, annual-average concentrations of NOx, NO2, ozone and PM10 were estimated within the two urban areas. For London, results averaged over a number of sites showed a fall in NOx and a rise in ozone, but only small changes in NO2 and PM10. For Glasgow, the changes in all four chemical species were small. Large-scale background ozone values from a global chemical transport model are also presented. These show a decrease in background ozone due to climate change. To assess the net impact of both large scale and local processes will require models which treat all relevant scales.  相似文献   

4.
Environmental Science and Pollution Research - While climate change is having serious impacts on agriculture and may require ongoing adaptation, short-run threats to global food security are also...  相似文献   

5.
This paper investigates the possible impacts of climate change on aquatic salinity and mangrove species in the Bangladesh Sundarbans. The impact analysis combines the salinity tolerance ranges of predominant mangrove species with aquatic salinity measures in 27 scenarios of climate change by 2050. The estimates indicate significant overall losses for Heritiera fomes; substantial gains for Excoecaria agallocha; modest changes for Avicennia alba, A. marina, A. officinalis, Ceriops decandra, and Sonneratia apetala; and mixed results for species combinations. Changes in mangrove stocks are likely to change the prospects for forest-based livelihoods. The implications for neighboring communities are assessed by computing changes in high-value mangrove species for the five sub-districts in the Sundarbans. The results of the impact analysis indicate highly varied patterns of gain and loss across the five sub-districts. Overall, however, the results suggest that salinity-induced mangrove migration will have a strongly regressive impact on the value of timber stocks because of the loss of highest value timber species, Heritiera fomes. In addition, the augmented potential for honey production will likely increase conflicts between humans and wildlife in the region.  相似文献   

6.

The rise in global temperature is one of the main threats of extinction to many vulnerable species by the twenty-first century. The negative impacts of climate change on the northern highlands of Pakistan (NHP) could change the species composition. Range shifts and range reduction in the forested landscapes will dramatically affect the distribution of forest-dwelling species, including the Galliformes (ground birds). Three Galliformes (e.g., Lophophorus impejanus, Pucrasia macrolopha, and Tragopan melanocephalus) are indicator species of the environment and currently distributed in NHP. For this study, we used Maximum Entropy Model (MaxEnt) to simulate the current (average for 1960–1990) and future (in 2050 and 2070) distributions of the species using three General Circulation Models (GCMs) and two climate change scenarios, i.e., RCP4.5 (moderate carbon emission scenario) and RCP8.5 (peak carbon emission scenario). Our results indicated that (i) under all three climate scenarios, species distribution was predicted to both reduce and shift towards higher altitudes. (ii) Across the provinces in the NHP, the species were predicted to average lose around one-third (35%) in 2050 and one-half (47%) by 2070 of the current suitable habitat. (iii) The maximum area of climate refugia was projected between the altitudinal range of 2000 to 4000 m and predicted to shift towards higher altitudes primarily?>?3000 m in the future. Our results help inform management plans and conservation strategies for mitigating the impacts of climate change on three indicator Galliforms species in the NHP.

  相似文献   

7.
8.
The likely impact of climate change on the moisture regime of Scottish soils and consequently on agriculture and land use has been addressed using a novel Geographic Information Systems (GIS) approach. Current estimates of changes in summer precipitation by the year 2030 are 0% with an associated uncertainty of +/- 11%. This study considers the worst case scenario of a decrease in rainfall by 11% which will lead to some low rainfall areas experiencing an increased drought risk, particularly on lighter soils. Wet areas with heavy soils could benefit from an increase in the accessibility period for machinery. As the major agricultural land in Scotland is located on the relatively dry east coast where localised problems due to drought are not uncommon even under the present climate, the detrimental effects of a decrease in rainfall for the whole of Scotland are therefore likely to outweigh the benefits. Approximately 8% of Scotland has been identified in this study as soil/climate combinations which will be susceptible to drought should summer rainfall decrease by 11% and summer temperature increase by 1.4 degrees C.  相似文献   

9.
10.
With the 'International Trading of Emission Allowances' (ITEA) model, we have analysed the flexibility mechanisms provided for in the Kyoto Protocol. Three main mechanisms of flexibility are analysed differentiation of initial commitments, multiple sources, and locational flexibility (trading). A differentiation of commitments could help the evolution of commitments, especially with a trading regime, which could create some income. Multiple sources give a large pool of cheaper abatement options from the non-CO2 gases, and costs are reduced substantially. Finally, a trading regime would make available even more cheap abatement options, mainly in the economies in transition (EITs). This regime would provide income support for the EITs, helping them to speed up their transition. The combined mechanisms reduce dramatically the costs for the compliance with the protocol for the whole of Annex I; they fall to zero in some cases. Two other main findings deal with the EU and the EITs. Internal trading would ease the debate on the internal distribution of commitments within the EU under the bubble provision, reducing costs significantly. The allocations in the protocol for the EITs probably create a huge excess - 'hot air' - which could seriously harm the agreement if it is not dealt with. Excluding the hot air will increase costs for the quota importers, and it will also slightly reduce income for the relevant EITs, but this is offset by a rising price, which also benefits other EITs.  相似文献   

11.
The instrumental period of climate history began in the 18th century with the commencement of routine weather observations at fixed sites. Estimates of global-mean climate (e.g. temperature and precipitation) were not possible, however, until the establishment of extensive observing networks midway through the 19th century. This paper reviews our knowledge of global climate change in the instrumental period. Time series of global-mean temperature and precipitation are examined and a comparison is made between two independent 30-year climatologies: 1931-1960 and 1961-1990. Examples are also provided of regional-scale climate changes. Such assessments are important for two reasons. First, they establish the variability of climate on the time-scale of decades, time-scales upon which it is reasonable to plan economic and socio-political activities. Second, and more specifically, they enable us to quantify the magnitude of global-mean climate change which has occurred over this period. Such detailed diagnostic climate information is a necessary, although not sufficient, prerequisite for the detection of global-scale warming which may have occurred due to the enhanced greenhouse effect. Some attention is given to explanations of the observed changes in global-mean climate.  相似文献   

12.
An ecological model for the solar saltern of Sfax (Tunisia) was established and validated by comparing simulation results to observed data relative to horizontal distributions of temperature, nutrients and phytoplankton biomass. Sensitivity analysis was performed in order to assess the influence of the main ecological model parameters. First applied at the saltern’s pond A1, the model was calibrated with field data measured over 4 years of study (from 2000 to 2003), which allowed an evaluation of parameters such as maximum growth rate of phytoplankton, optimal growth temperature and constant of half saturation for P/N assimilation by phytoplankton. Simulation results showed that the model allowed us to predict realistic phytoplankton variations of the study area, though we were unable to accurately reproduce the nutrient variation. The model was then applied to simulations of the impact of changes in phytoplankton biomass through scenarios such as hypothetic climate changes and saltern restoration.  相似文献   

13.
14.
Combustion of coal, oil, and natural gas, and to a lesser extent deforestation, land-cover change, and emissions of halocarbons and other greenhouse gases, are rapidly increasing the atmospheric concentrations of climate-warming gases. The warming of approximately 0.1-0.2 degrees C per decade that has resulted is very likely the primary cause of the increasing loss of snow cover and Arctic sea ice, of more frequent occurrence of very heavy precipitation, of rising sea level, and of shifts in the natural ranges of plants and animals. The global average temperature is already approximately 0.8 degrees C above its preindustrial level, and present atmospheric levels of greenhouse gases will contribute to further warming of 0.5-1 degrees C as equilibrium is re-established. Warming has been and will be greater in mid and high latitudes compared with low latitudes, over land compared with oceans, and at night compared with day. As emissions continue to increase, both warming and the commitment to future warming are presently increasing at a rate of approximately 0.2 degrees C per decade, with projections that the rate of warming will further increase if emission controls are not put in place. Such warming and the associated changes are likely to result in severe impacts on key societal and environmental support systems. Present estimates are that limiting the increase in global average surface temperature to no more than 2-2.5 degrees C above its 1750 value of approximately 15 degrees C will be required to avoid the most catastrophic, but certainly not all, consequences of climate change. Accomplishing this will require reducing emissions sharply by 2050 and to near zero by 2100. This can only be achieved if: (1) developed nations move rapidly to demonstrate that a modem society can function without reliance on technologies that release carbon dioxide (CO2) and other non-CO2 greenhouse gases to the atmosphere; and (2) if developing nations act in the near-term to sharply limit their non-CO2 emissions while minimizing growth in CO2 emissions, and then in the long-term join with the developed nations to reduce all emissions as cost-effective technologies are developed.  相似文献   

15.
This paper provides a concise summary of the natural and the anthropogenic greenhouse effect and the major causes for climate change. This summary may be particularly accessible for readers who are not familiar with natural sciences. Building on these explanations, we develop a simplifying atmospheric model that demonstrates a widely unknown aspect of global warming: the greenhouse effect enhances its own causes and, as a repercussion, induces a further global warming. This effect, referred to as domino effect, is based on the additional production of heat in the atmosphere, happening substantively while heat passes our atmosphere on its way to outer space. On the basis of our considerations, in principle, technological efficiency improvements appear to be an attractive measure for mitigating global warming.  相似文献   

16.
We modelled the combined effects of past and expected future changes in climate and nitrogen deposition on tree carbon sequestration by European forests for the period 1900-2050. Two scenarios for deposition (current legislation and maximum technically feasible reductions) and two climate scenarios (no change and SRES A1 scenario) were used. Furthermore, the possible limitation of forest growth by calcium, magnesium, potassium and phosphorus is investigated. The area and age structure of the forests was assumed to stay constant to observations during the period 1970-1990. Under these assumptions, the simulations show that the change in forest growth and carbon sequestration in the past is dominated by changes in nitrogen deposition, while climate change is the major driver for future carbon sequestration. However, its impact is reduced by nitrogen availability. Furthermore, limitations in base cations, especially magnesium, and in phosphorus may significantly affect predicted growth in the future.  相似文献   

17.
Environmental Science and Pollution Research - The Himalayan glaciers provide water to a large population in south Asia for a variety of purposes and ecosystem services. As a result, regional...  相似文献   

18.
The continuing increase in atmospheric carbon dioxide (CO2) makes it essential that climate sensitivity, the equilibrium change in global mean surface temperature that would result from a given radiative forcing, be quantified with known uncertainty. Present estimates are quite uncertain, 3 +/- 1.5 K for doubling of CO2. Model studies examining climate response to forcing by greenhouse gases and aerosols exhibit large differences in sensitivities and imposed aerosol forcings that raise questions regarding claims of their having reproduced observed large-scale changes in surface temperature over the 20th century. Present uncertainty in forcing, caused largely by uncertainty in forcing by aerosols, precludes meaningful model evaluation by comparison with observed global temperature change or empirical determination of climate sensitivity. Uncertainty in aerosol forcing must be reduced at least three-fold for uncertainty in climate sensitivity to be meaningfully reduced and bounded.  相似文献   

19.
Hydrological change--climate change impact simulations for Sweden   总被引:6,自引:0,他引:6  
Climate change resulting from the enhanced greenhouse effect is expected to give rise to changes in hydrological systems. This hydrological change, as with the change in climate variables, will vary regionally around the globe. Impact studies at local and regional scales are needed to assess how different regions will be affected. This study focuses on assessment of hydrological impacts of climate change over a wide range of Swedish basins. Different methods of transferring the signal of climate change from climate models to hydrological models were used. Several hydrological model simulations using regional climate model scenarios from Swedish Regional Climate Modelling Programme (SWECLIM) are presented. A principal conclusion is that subregional impacts to river flow vary considerably according to whether a basin is in northern or southern Sweden. Furthermore, projected hydrological change is just as dependent on the choice of the global climate model used for regional climate model boundary conditions as the choice of anthropogenic emissions scenario.  相似文献   

20.
Arctic freshwater and diadromous fish species will respond to the various effects of climate change in many ways. For wide-ranging species, many of which are key components of northern aquatic ecosystems and fisheries, there is a large range of possible responses due to inter- and intra-specific variation, differences in the effects of climate drivers within ACIA regions, and differences in drivers among regions. All this diversity, coupled with limited understanding of fish responses to climate parameters generally, permits enumeration only of a range of possible responses which are developed here for selected important fishes. Accordingly, in-depth examination is required of possible effects within species within ACIA regions, as well as comparative studies across regions. Two particularly important species (Arctic char and Atlantic salmon) are examined as case studies to provide background for such studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号