首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: During the years 1930 to 1978 a research program has been carried out in Illinois dealing with reservoir sedimentation. Detailed surveys have been made on 107 lakes. A generalized graph allows annual reservoir capacity loss in percent to be estimated based on size of watershed, lake capacity, and watershed ratio. For the 258 square miles of land on the watershed of Lake Springfield, complete soil maps were measured using a graphic digitizer. A computer readable map was produced. The Universal Soil Loss Equation was solved to provide upland soil losses for each acre of the watershed. Average watershed soil loss was 3.96 tons per acre per year, and 24 percent of this was delivered to the lake.  相似文献   

2.
ABSTRACT: We have developed a computer model of soil loss on an upland watershed from the continuity considerations for sediment transport and from equations describing rill and interrill erosion. The model is based on dividing the upland area into a grid containing rill and interill zones, on the Universal Soil Loss Equation (USLE), and on equations describing detachment and transport capacity of rill flow. The USLE estimates the sediment load from the contributing areas. The location and amount of total erosion and deposition are determined by comparing the transport and detachment capacity of rill flow for specific storms. The model considers the mechanics of erosion process and can serve as basis for reservoir and channel design and land use planning.  相似文献   

3.
Topographic Effects on Soil Organic Carbon in Louisiana Watersheds   总被引:2,自引:0,他引:2  
Terrestrial carbon storage is influenced by a number of environmental factors, among which topographic and geomorphological features are of special significance. This study was designed to examine the relationships of soil organic carbon (SOC) density to various terrain parameters and watershed characteristics across Louisiana, USA. A polygon data set of 484 watersheds and 12 river drainage basins for Louisiana was used to form the landscape units. SOC densities were calculated for each soil map unit using the State Soil Geographic (STATSGO) database. Average drainage densities and average slopes at watershed and basin scales were quantified with the 1:24 K Digital Elevation Models (DEM) data, and the Louisiana hydrographic water features. Correlation and regression analyses were performed to determine relationships among drainage density, slope, elevation, and SOC. The study found an average watershed drainage density of 1.6 km/km2 and an average watershed slope of 2.9 degrees in Louisiana. The results revealed that SOC density at both watershed and basin scales was closely related to drainage density, slope, and elevation. SOC density was positively correlated with watershed drainage density, but negatively correlated with watershed slope gradient and elevation. Regression models were developed for predicting SOC density at watershed and basin scales, obtaining regression coefficients (r 2) ranging from 0.43 to 0.83. The study showed that estimation of SOC at watershed and drainage basin scales combining DEM data can be a feasible approach to improve the understanding of the relationships among SOC, topographic, and geomorphological features.  相似文献   

4.
Three mathematical models, the runoff curve number equation, the universal soil loss equation, and the mass response functions, were evaluated for predicting nonpoint source nutrient loading from agricultural watersheds of the Mediterranean region. These methodologies were applied to a catchment, the gulf of Gera Basin, that is a typical terrestrial ecosystem of the islands of the Aegean archipelago. The calibration of the model parameters was based on data from experimental plots from which edge-of-field losses of sediment, water runoff, and nutrients were measured. Special emphasis was given to the transport of dissolved and solid-phase nutrients from their sources in the farmers' fields to the outlet of the watershed in order to estimate respective attenuation rates. It was found that nonpoint nutrient loading due to surface losses was high during winter, the contribution being between 50% and 80% of the total annual nutrient losses from the terrestrial ecosystem. The good fit between simulated and experimental data supports the view that these modeling procedures should be considered as reliable and effective methodological tools in Mediterranean areas for evaluating potential control measures, such as management practices for soil and water conservation and changes in land uses, aimed at diminishing soil loss and nutrient delivery to surface waters. Furthermore, the modifications of the general mathematical formulations and the experimental values of the model parameters provided by the study can be used in further application of these methodologies in watersheds with similar characteristics.  相似文献   

5.
The Khanikhola watershed in Sikkim is agrarian with about 50% area under rain-fed agriculture representing the conditions of the middle mountains all over the Himalaya. The study was conducted to assess overland flow, soil loss and subsequent nutrient losses from different land uses in the watershed, and identify biotechnological inputs for management of mountain farming systems. Overland flow, soil and nutrient losses were very high from open agricultural (cropped) fields compared to other land uses, and more than 72% of nutrient losses were attributable to agriculture land use. Forests and large cardamom agroforestry conserved more soil compared to other land uses. Interventions, like cultivation of broom grass upon terrace risers, N2-fixing Albizia trees for maintenance of soil fertility and plantation of horticulture trees, have reduced the soil loss (by 22%). Soil and water conservation values (> 80%) of both large cardamom and broom grass were higher compared to other crops. Use of N2-fixing Albizia tree in large cardamom agroforestry and croplands contributed to soil fertility, and increased productivity and yield. Bio-composting of farm resources ensured increase in nutrient availability specially phosphorus in cropped areas. Agricultural practices in mountain areas should be strengthened with more agroforestry components, and cash crops like large cardamom and broom grass in agroforestry provide high economic return and are hydroecologically sustainable.  相似文献   

6.
Excessive soil losses due to erosion or lateral displacement by machinery impair productivity. Some soil loss is tolerable, but not so much that plant productivity diminishes. Thus productivity is the dominant concern in determining soil-loss tolerance. The effects of soil loss on productivity, however, are difficult to determine. Therefore, two alternatives are discussed for determining the limits of soil loss, or soil-loss tolerance. These alternatives are the maintenance of soil organic matter and, for shallow and moderately deep soils, the maintenance of soil depth. They are not new strategies, but our rapidly increasing knowledge of the dynamics of soil organic matter and the rates of soil formation from bedrock or consolidated sediments warrants the reconsideration of these alternatives. Reductions in either soil organic matter or the depth of shallow or moderately deep soils will lead to declining productivity. Soil organic matter, considered to be a surrogate for productivity, is much easier to monitor than is productivity. Also, there are many computer models for predicting the effects of management on soil organic matter. Recently compiled data on rates of soil formation suggest that soil losses of 1 t/a (2.24 Mg/ha yr) are greater than the rate of replenishment by the weathering of lithic or paralithic material in all but very wet climates.  相似文献   

7.
达县百节"水保生态园区"水土流失治理与生态环境保护   总被引:2,自引:1,他引:1  
张敏 《四川环境》2005,24(2):63-64,75
本文反映了严重的水土流失是导致达县百节河小流域生态环境恶化的主要原因。阐述了通过实施水土流失治理三大措施:工程措施、生物措施、农耕措施,有效地控制了水土流失等生态问题,极大地改善了当地生态环境,取得了显著的三大效益:经济效益、生态效益和社会效益。同时陈述了百节河小流域生态园区的建设特色:组织协调部门资金捆绑使用,集中投入:业主参与,责、权、利统一,投资渠道多元化,为水土保持和生态环境建设注入了生机与活力。  相似文献   

8.
In Nepal, soil erosion under maize (Zea mays) agro-ecosystems is most critical during the pre-monsoon season. Very few field experiments have been conducted on reduced tillage and rice straw (Oryza sativa) mulching, although these conservation approaches have been recommended. Thus, a five replicate field experiment was established in 2001 at Kathmandu University (1500 m above sea level) on land with 18% slope to evaluate the efficiency of reduced tillage and mulching on soil and nutrient losses and maize yield. The results showed non-significant differences among conservation approaches on runoff and maize yield. Mulching and reduced tillage significantly lowered annual and pre-monsoon soil and nutrient losses compared to conventional tillage. Soil organic matter (SOM) and nitrogen losses associated with eroded sediment were significantly higher in conventional tillage. However, due to limited availability and high opportunity cost of rice straw, reduced tillage would be a better option for soil and nutrient conservation without sacrificing economic yield in upland maize agro-ecosystems.  相似文献   

9.
An erosion-based land classification system for military installations   总被引:3,自引:0,他引:3  
The universal soil loss equation (USLE) has been integrated with a geographic information system known as the geographical resources analysis support system (GRASS) to create a land classification system for use by military trainers and land managers to minimize the environmental impacts of military training activities. The USLE provides an estimate of current average annual sheet and rill erosion based upon factors representing climate, soil erodibility, topography, cover, and conservation support practices. The erosion estimate is compared to erosion tolerance values to produce an expression of the current erosion status. An index of inherent site erodibility is also achieved through manipulation of the USLE. Based on published soil surveys, satellite imagery, and ground-truth vegetation transects, data layers are created within GRASS for each of the component factors of the USLE. Appropriate mathematical operations are performed with the data layers, and color-coded maps are produced that represent the erosion status and erodibility index for each 50-m × 50-m area of soil surface. These maps aid military trainers and land managers in scheduling appropriate kinds and intensities of military training activities.  相似文献   

10.
ABSTRACT: Intensive cropping systems based on mechanical movement of soil have induced land degradation in most agricultural areas due to soil erosion and soil fertility losses. Thus, farmers have been increasing fertilization rates to maintain an economically competitive crop yield. This practice has resulted in water quality degradation and lake eutrophication in many agricultural watersheds. Research was conducted in the Patzcuaro watershed in central Mexico to develop appropriate technology that prevents nonpoint source pollution from fertilizers. Organic matter (OM) and nitrogen (N) losses in runoff and nitrate (NO3‐N) percolation in Andisols with corn under conventional till (CT) and no‐till (NT) treatments using variable percentages of crop residue as soil cover were investigated for steep‐slope agriculture. USLE type runoff plots were used to collect water runoff, while suction tubes with porous caps at 30, 60, and 90 cm depth were used to sample soil water solutes for NO3‐N analyses. Results indicated a significant reduction of N and OM losses in runoff as residue cover increased in the NT treatments. Inorganic N in runoff was 25 kg/ha for NT without residue cover (NT‐0) and 6 kg/ha for the NT with 100 percent residue cover (NT‐100). Organic matter losses in runoff were 157 and 24 kg/ha for the NT‐0 and NT‐100 treatments, respectively. Nitrate‐N percolation was evident in CT and NT with 100 percent residue cover (NT‐100). However, NT‐100 had higher NO3‐N concentration at the root zone, suggesting the possibility of reducing fertilization rates with the use of NT treatments.  相似文献   

11.
ABSTRACT: Soil erosion is the most significant threat to land productivity and environmental quality on the Loess Plateau of China. The annual total sediment load of the Yellow River is 1.6 billion tons, with about 90 percent coming from soil erosion from the Loess Plateau. To reduce soil erosion from the Loess Plateau, conservation practices, including tree planting, ridge construction between fields and around gullies, terrace and ditch construction perpendicular to the main slope, and dam construction are being implemented. An evaluation of these conservation practices is required before they are implemented at the large scale. The objective of this study is to evaluate the effectiveness of conservation practices to control runoff and sediment yield from paired watersheds in the hilly gully region of the Loess Plateau. The advantage of the paired watershed approach is its sensibility in detecting differences in runoff and sediment transport by monitoring both watersheds during two periods, an initial period with no conservation practices and a treatment period with only one watershed subjected to conservation practices. Implementation of the conservation practices resulted in (1) cumulative runoff and sediment yield that were, respectively, 25 and 38 percent less from the treatment watershed than from the control, (2) a decrease in the number of rainfall events producing runoff and sediment transport (94 in the control versus 63 in treatment), and (3) a reduction in the maximum discharge and maximum suspended sediment concentration.  相似文献   

12.
SOIL EROSION AND SEDIMENT YIELD PREDICTION ACCURACY USING WEPP1   总被引:1,自引:0,他引:1  
ABSTRACT: The objectives of this paper are to discuss expectations for the Water Erosion Prediction Project (WEPP) accuracy, to review published studies related to WEPP goodness of fit, and to evaluate these in the context of expectations for WEPP's goodness of fit. WEPP model erosion predictions have been compared in numerous studies to observed values for soil loss and sediment delivery from cropland plots, forest roads, irrigated lands and small watersheds. A number of different techniques for evaluating WEPP have been used, including one recently developed where the ability of WEPP to accurately predict soil erosion can be compared to the accuracy of replicated plots to predict soil erosion. In one study involving 1,594 years of data from runoff plots, WEPP performed similarly to the Universal Soil Loss Erosion (USLE) technology, indicating that WEPP has met the criteria of results being “at least as good with respect to observed data and known relationships as those from the USLE,” particularly when the USLE technology was developed using relationships derived from that data set, and using soil erodibility values measured on those plots using data sets from the same period of record. In many cases, WEPP performed as well as could be expected, based on comparisons with the variability in replicate data sets. One major finding has been that soil erodibility values calculated using the technology in WEPP for rainfall conditions may not be suitable for furrow irrigated conditions. WEPP was found to represent the major storms that account for high percentages of soil loss quite well—a single storm application that the USLE technology is unsuitable for—and WEPP has performed well for disturbed forests and forest roads. WEPP has been able to reflect the extremes of soil loss, being quite responsive to the wide differences in cropping, tillage, and other forms of management, one of the requirements for WEPP validation. WEPP was also found to perform well on a wide range of small watersheds, an area where USLE technology cannot be used.  相似文献   

13.
Environmental effects of soil property changes with off-road vehicle use   总被引:1,自引:0,他引:1  
The effects of off-road vehicles (ORVs) on the physical and chemical properties of 6 soil series were measured at Hollister Hills State Vehicular Recreation Area in central California. Accelerated soil erosion and the alteration of surface strength, bulk density, soil moisture, temperature, and soil nutrients were quantified to gain an insight into the difficulty of revegetating altered, or modified, areas.Erosion is severe at Hollister Hills, particularly in coarse grained soils on steep slopes. Erosion displaced 0.5 and 3.0 metric tons per square meter on 2 trails on gravelly sandy loam, and 0.3 metric tons/m2 from a trail on sandy loam. The surface strength and bulk density increased while the soil moisture decreased in gravelly sandy loam, coarse sandy loam, sandy loam, and clay. Clay loam had an increased surface strength with variably increased bulk density and no decrease in soil moisture. Diurnal temperature fluctuations increased and organic material and soil nutrients decreased in soil modified by vehicles.These property changes increase the erosion potential of the soil, impede germination of seedlings, and slow natural revegetation. Management methods in ORV-use areas should include planning trails by prior application of the universal soil loss equation and soil surveys, trail closure before complete loss of the soil mantle, and revegetation of closed areas.  相似文献   

14.
分别在干热河谷生态区和华西雨屏生态区的坡改梯地区设置试验小区和对照试验区,通过采集土壤样品进行室内分析,研究在不同的坡位、不同的季节变化下两种生态区实施坡改梯措施对土壤养分保持的效果.干热河谷生态区以清溪小流域为例,华西雨屏生态区以凤鸣小流域为例.试验结果表明,在两个生态区的坡改梯工程试验区,空间上,各个坡位氮磷养分的...  相似文献   

15.
Several types of watershed program areas, principally but not solely those operated under authority of the Watershed Protection and Flood Prevention Act, are greatly altering the American landscape for good. While structural measures tend to be the most spectacular feature of these watersheds, land treatment measures (soil, water, woodland, and wildlife conservation practices) actually are basic to the long term stability and maximum contributions of these watershed programs.  相似文献   

16.
ABSTRACT: In order to choose among “best management practices,” forest managers need to predict sediment yield to perennial streams following various forest land operations. The “universal soil loss equation” (USLE) is not directly applicable to forest operations because of the heterogenous soil surface conditions left by harvesting, site preparation, and planting. A sediment hazard index is proposed, to be based on the amount of exposed mineral soil and its proximity to streams. The model offered includes rainfall erosivity, soil erodibility and average land slope, together with the index W. A paired watershed experiment in the central Georgia Piedmont was used to estimate parameters in the model. The experimental basin (80 acres) was clearcut, drum roller chopped twice, and planted by machine. The standard error of estimate of sediment yield was computed to be about 50/lbs/ac per sampling period (four months). Use of William's erogivity index (storm flow times peak flow) reduced the standard error to 33/lbs/ac.  相似文献   

17.
ABSTRACT: The consumptive loss from man-made snowmaking at six Colorado ski areas is calculated. The focus of the procedures in this investigation is on the consumptive loss that occurs to man-made snow particles during the period they reside on or in the snowpack until spring snowmelt (termed the watershed loss). Calculated watershed losses under a variety of precipitation and temperature conditions at six ski areas varied from 7 to 33 percent. These calculations were made using the calibrated Subalpine Water Balance Simulation Model (Leaf and Brink, 1973a, 1973b). The watershed loss of 7 to 33 percent indicates the range of likely watershed losses that can be expected at Colorado ski areas. A previous paper by the authors (Eisel et al., 1988) provided estimates of the mean consumptive loss during the snowmaking process (termed initial loss) for conditions existing at Colorado ski areas to be 6 percent of water applied. Therefore, based on the mean initial loss, the total consumptive loss from man-made snowmaking under conditions found at Colorado ski areas could be expected to range from 13 to 37 percent. These results demonstrate the range of total consumptive losses that could be expected in various years and for various watershed conditions. These total percentage losses cannot be extrapolated directly to other specific sites because the total consumptive loss is dependent on temperature during actual snowmaking, temperature and precipitation throughout the winter at the specific ski area, and watershed conditions at the ski area. Consumptive losses to man-made snow for a specific ski area should be estimated using the handbook procedures developed especially for this purpose (Colorado Ski Country USA, 1986b).  相似文献   

18.
Data were collected from 1011 farmers in three Midwestern watersheds (Ohio, Iowa, and Minnesota) to assess factors that influence the use of conservation production systems at the farm level. The “vested interests” perspective used to guide the investigation was derived from elements of social learning and social exchange theories. Respondents were asked to indicate their frequency of use for 18 agricultural production practices that could be adopted on Midwestern farms at the time of the study. Responses to the 18 items were summed to form a composite variable, termed “conservation production index,” for use as the dependent variable in multivariate analysis. Eleven independent variables were identified from the theory as likely predictors of conservation adoption, including respondents' perceptions about production costs, output and risks, and perceived importance of access to subsidies, technical assistance, and informational/educational programs. Regression analysis was used to assess the performance of the independent variables in explaining variance in the conservation production index. Explained variance in the three regression models ranged from 2% in the Minnesota watershed to 19% in the Ohio watershed. The researchers concluded that the model had limited utility in predicting adoption of conservation production systems within the three study watersheds. Findings are discussed in the context of conservation programs within the three areas.  相似文献   

19.
The recent growth in the size of dairy cattle farms and the concentration of farms into smaller areas in Finland may increase local water pollution due to increased manure production and slurry application to grass. Therefore, a field study was conducted to monitor losses of total phosphorus (TP), dissolved reactive phosphorus (DRP), and fecal microorganisms in surface runoff from a perennial ley. Cattle slurry was added once a year in June 1996-1997 (Study I) and biannually in June and October 1998-2000 (Study II). The slurry was surface broadcast or injected into the clay soil. The field had a slope of 0.9 to 1.7%. Mineral fertilizer was applied on control plots. Biannual slurry broadcasting increased DRP (p < 0.001) and TP losses (p < 0.001) and numbers of fecal microorganisms in surface runoff waters. The highest losses of TP (2.7 kg ha(-1) yr(-1)) and DRP (2.2 kg ha(-1) yr(-1)) and the highest numbers of fecal coliforms (880 colony-forming units [CFU] per 100 mL) and somatic coliphages (2700 plaque-forming units [PFU] per 100 mL) were measured after broadcasting slurry to wet soil followed by rainfall in fall 1998. Injection reduced the TP and DRP losses in surface runoff by 79 and 86%, respectively, compared with broadcasting (17 Oct. 1998-27 Oct. 1999). Corresponding numbers for fecal coliforms were 350 CFU (100 mL)(-1) and for somatic coliphages were 110 PFU (100 mL)(-1) in surface runoff after injection in October 1998. Slurry injection should be favored when spreading slurry amendments to grassland to avoid losses of P and fecal microorganisms in runoff to surface waters.  相似文献   

20.
The Agricultural Conservation Program (ACP), is undergoing a new, rigorous evaluation to determine its effectiveness in conserving the Nation's agricultural soils and waters. ACP deals with many types of conservation practices, but the focus here is on the evaluation of soil and water related practices. ACP has depended heavily on the State and private forestry services, Soil Conservation Service, and the Cooperative Extension Services, for technical expertise. Thus, the process is an evaluation of the effectiveness of a “team of agencies,” as well as of the program itself. Results of the evaluation have helped to develop new thrusts which have moved ACP further into the position of treating the total conservation problem. Phase I has its limitations. It did not address the impact of wind erosion, water quality, change in productive capacity, soil quality, wildlife habitat, off site and farm income impacts. It does show that ACP has and is doing a very good job in meeting its stated purposes. It is clear that ACP's effectiveness can be improved with more and better advanced planning and more intensive use of soil maps, the USLE, and other scientific tools. ACP is headed in this direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号