首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
固体厌氧消化原料流变特性研究综述   总被引:2,自引:0,他引:2  
厌氧消化原料的流变特性是厌氧消化工艺设计和运行的重要参数。本文从研究对象、实验操作、研究内容和结果、影响因素以及发展方向等方面对固体厌氧消化原料,特别是污泥的流变特性研究现状进行了概述。研究表明,污泥来源广泛,成分复杂,属于非牛顿流体的范畴,其流变特性受多种因素影响,其中污泥的总悬浮固体(TSS)(或混合液悬浮固体(MLSS))和温度是最主要的影响因素。大部分研究采用层流剪切实验对物料的流变特性进行表征,研究对象范围有待于扩大。尚需针对流体本构方程的改进,共消化对于原料流变特性的影响,混合液固、液相指标与流变参数的关系等方面开展研究,为利用流变参数作为工艺控制参数提供理论依据,并解决工程放大等问题。  相似文献   

2.
Seventeen different wastewater sludges were characterized using both chemical and organic matter fractionation methods (water extraction, Van Soest method, and acid hydrolysis) and 6-mo incubation studies to assess their decomposition in soil. Simple correlation and multiple factor analysis (MFA) were then performed to establish relationships between composition and C and N mineralization of sludges. Carbon and N concentrations covered a wide range of values, but organic carbon (C(o)) to organic nitrogen (N(o)) ratios were relatively low (from 5 to 19). Carbon and N were mainly distributed in the most soluble fractions of the Van Soest method and in the water-insoluble fraction at 100 degrees C. Carbon mineralization varied from 180 to 661 g C kg(-1) organic C added during the 168-d incubation. The addition of sludges led to different inorganic N dynamics: from -3.3 to +120.0 g N kg(-1) sludge organic C mineralized after the 168-d incubation. Fractionation studies showed that the most discriminating method was acid hydrolysis. Carbon mineralization was linked with the proportion of sludge N and C present in the lignin-like fraction (r = -0.68 and -0.65, respectively). Significant relationships were established between N mineralization and N(o) to C(o) ratio (0.88 < r < 0.95) and the C(o) to N(o) ratio of sludges, the C to N ratio of the soluble fraction obtained by the Van Soest method, the water-soluble fraction at 100 degrees C, and the C and N present in the acid-hydrolyzable fraction. Finally, multiple factor analysis also enabled establishing a sludge typology using five clusters based on composition and mineralization characteristics.  相似文献   

3.
About peak and loop in sludge rheograms   总被引:1,自引:0,他引:1  
The thixotropic behavior of sewage sludge is analysed by varying several parameters such as the time of rest, the slope of the shear rate ramp or the data sampling. We observed that only the initial stress overshoot is time-dependent but always appears, for a given material, at the same critical angle which indicates it is linked to elastic effects: during shear, the material has a short memory. The visualisation of the velocity profile within the sheared material confirms this assumption. We also demonstrate that the hysteresis area is highly dependant on the data sampling and cannot be considered as a material characteristic. Finally, we pointed out that shear rate cycles are not the most powerful method to characterize thixotropy.  相似文献   

4.
The climatic conditions of the Basque Country (northern Spain) provide the favorable conditions for the growth of grasslands and the development of livestock enterprises. The intensification of the farms is leading to serious environmental risks due to the great generation of manures and slurries and their subsequent inefficient management. Their application involves N losses that can be pollutant. The environmental company ADE BIOTEC S.L. is developing the process called "electroflotation" with the aim of reducing the volume of slurries from intensive livestock farms. The process consists basically of an electrolysis of the slurry catalyzed by iron which leads to the flocculation of the solid particles, giving as a final result a solid and a liquid fraction. The objective of this work was to assess the usefulness of these two fractions as fertilizers. With this aim, the environmental risk of their application was determined regarding gaseous emissions to the atmosphere (i.e., of NO, NH(3), N(2)O, and CO(2)) and their fertilizer capacity was investigated by determining their effects on grassland yield and N uptake in comparison to the untreated slurry. The untreated slurry and the solid and the liquid fractions were all applied at a rate of 70 kg NH(4)(+)-N ha(-1). The application of the products of electroflotation did not affect N(2)O and CO(2) losses, being of the same magnitude as those caused by the application of the original slurry. However, after their application, a reduction in NH(3) volatilization losses was induced in the short term and a reduction in NO losses was caused in the long term. The solid and liquid fractions both increased biomass yield with respect to the untreated slurry. The solid fraction even induced a higher N uptake than the liquid fraction and the untreated slurry.  相似文献   

5.
In arid irrigated regions, the proportion of crop production under deficit irrigation with poorer quality water is increasing as demand for fresh water soars and efforts to prevent saline water table development occur. Remote sensing technology to quantify salinity and water stress effects on forage yield can be an important tool to address yield loss potential when deficit irrigating with poor water quality. Two important forages, alfalfa (Medicago sativa L.) and tall wheatgrass (Agropyron elongatum L.), were grown in a volumetric lysimeter facility where rootzone salinity and water content were varied and monitored. Ground-based hyperspectral canopy reflectance in the visible and near infrared (NIR) were related to forage yields from a broad range of salinity and water stress conditions. Canopy reflectance spectra were obtained in the 350- to 1000-nm region from two viewing angles (nadir view, 45 degrees from nadir). Nadir view vegetation indices (VI) were not as strongly correlated with leaf area index changes attributed to water and salinity stress treatments for both alfalfa and wheatgrass. From a list of 71 VIs, two were selected for a multiple linear-regression model that estimated yield under varying salinity and water stress conditions. With data obtained during the second harvest of a three-harvest 100-d growing period, regression coefficients for each crop were developed and then used with the model to estimate fresh weights for preceding and succeeding harvests during the same 100-d interval. The model accounted for 72% of the variation in yields in wheatgrass and 94% in yields of alfalfa within the same salinity and water stress treatment period. The model successfully predicted yield in three out of four cases when applied to the first and third harvest yields. Correlations between indices and yield increased as canopy development progressed. Growth reductions attributed to simultaneous salinity and water stress were well characterized, but the corrections for effects of varying tissue nitrogen (N) and very low leaf area index (LAI) are necessary.  相似文献   

6.
An investigation was conducted to examine aerobic digestion of the phosphorus-laden sludge produced at the Regina Wastewater Treatment Plant and feasibility of land use of this sludge combined with the dewatered anaerobically digested primary sludge from this plant. Experimental studies showed that aerobic digestion can be employed for the stabilization of the chemical sludge. Results of the feasibility analysis showed that mixing the two digested sludges met the heavy metal criteria set by various guidelines for agricultural use, presented the advantage of an increased concentration of nutrients and a decreased concentration of heavy metals, and a longer useful life of the agricultural site compared to using dewatered anaerobically digested primary sludge alone. Land application of the mixed digested sludges would be a more appropriate method of sludge disposal compared to the present practice of landfilling the dewatered sludge and lagooning the chemical sludge.  相似文献   

7.
Two novel solid-state 13C nuclear magnetic resonance (NMR) spectroscopic techniques, PSRE (proton spin relaxation editing) and RESTORE [Restoration of Spectra via T(CH) and T(1rho)H (T One Rho H) Editing], were used to provide detailed chemical characterization of the organic matter from six Australian sewage sludges. These methods were used to probe the submicrometer heterogeneity of sludge organic matter, and identify and quantify spatially distinct components. Analysis of the T1H relaxation behavior of the sludges indicated that each sludge contained two types of organic domains. Carbon-13 PSRE NMR subspectra were generated to determine the chemical nature of these domains. The rapidly relaxing component of each sludge was rich in protein and alkyl carbon, and was identified as dead bacterial material. The slowly relaxing component of each sludge was rich in carbohydrate and lignin structures, and was identified as partly degraded plant material. The bacterial domains were shown, using the RESTORE technique, to also have characteristically rapid T(1rho)H relaxation rates. This rapid T(1rho)H relaxation was identified as the main cause of underrepresentation of these domains in standard 13C cross polarization (CP) NMR spectra of sludges. The heterogeneous nature of sewage sludge organic matter has implications for land application of sewage sludge, since the two components are likely to have different capacities for sorbing organic and inorganic toxicants present in sewage sludge, and will decompose at different rates.  相似文献   

8.
Pyrolysis is a promising way to upgrade large amounts of residues from olive oil processing into charcoal. Pyrolysis of the stone and pulp fractions needed to be investigated before conclusions could be drawn. We subjected the olive stone fraction, the pulp fraction, and a mixture of the two to dynamic pyrolysis and isothermal pyrolysis at 360°C. We characterized the charcoals resulting from isothermal pyrolysis at 360°C for different durations in terms of the fixed-carbon content (FCC), carbon content (CC), and high heating value (HHV). We found that charcoal yield from the pulp was higher than that from the stones, which were 38.1% and 32.9%, respectively, after pyrolysis for 360 min. This seemingly unexpected result was due to the high contents of ash (6.22%) and extractives (13%) in the pulp, which remained completely and partially undecomposed, respectively, in the charcoals and are accounted for when calculating yields. However, charcoals obtained from the stones were of higher quality than charcoals from the pulp, with lower ash content and higher FCC, CC, and HHV. In particular, the FCC, CC, and HHV after pyrolysis for 360 min were 73.2%, 74.4%, and 30.2 MJ/kg for the stones and only 61.8%, 63.2%, and 25.9 MJ/kg for the pulp, respectively. Depending on the required quality of the final charcoal, our results help decide whether to pyrolyse the entire olive residues or only one of the two fractions, more likely the stones.  相似文献   

9.
The EU is committed to encourage biological treatments of organic waste as an alternative to landfill and also to enhance organic matter recycling. When these wastes are composted, the composition of the initial raw materials is very important in order to obtain a good quality product. In this article, the mineral composition of the organic fraction obtained from source-sorted collection (SC) and the organic fraction mechanically separated (MS) from mass-collected municipal solid waste was evaluated. Also, the compositions of these 2 raw materials that are used in the current Spanish municipal solid waste biological treatment facilities were compared. The mineral elements analyzed were the total content of the heavy metals Zn, Cu, Ni, Cr, Pb and Cd, and the plant nutrients P, K, Na, Ca, Mg, Fe and Mn. The results obtained were expressed on dry matter basis and on mineral matter basis. Important differences were detected between SC and MS samples, on both dry and mineral matter basis. In general, nutrient contents are higher in SC than in MS, and heavy metal contents are significantly lower in SC. Our results also support the idea that the heavy metal migration from the non-compostable materials to the decomposable matrix takes place from the beginning of the process while both types of materials are in contact.  相似文献   

10.
Physical and chemical characterisation of metal finishing industrial wastes   总被引:5,自引:0,他引:5  
In EU countries approximately 150,000 tons/year of galvanic sludges are generated by 4000 industrial units from the corresponding wastewater treatment plants. These sludges are generally classified as hazardous (European Waste Catalogue as adopted in Council Decision 2000/532/CE and as amended by Decisions 2001/118/EC, 2001/119/EC and 2001/573/CE), basically due to the presence of heavy metals. This work attempts to better understand the physical and chemical characteristics of these sludges, by studying 39 samples collected in different Portuguese industries that should represent all kinds of similar wastes independent of their place of generation. Chemical composition and leaching characteristics are given, together with density, grain size distribution, and specific surface area values. Statistical analysis was used for grouping the wastes according to chemical parameters, which might be useful to predict potential reuse as raw materials for different applications.  相似文献   

11.
Malodor emissions limit public acceptance of using municipal biosolids as natural organic resources in agricultural production. We aimed to identify major odorants and to evaluate odor concentrations associated with land application of anaerobically digested sewage sludges (Class B) and their alkaline (lime and coal fly ash)-stabilized products (Class A). These two types of biosolids were applied at 12.6 tonnes ha(-1) (dry weight) to microplots of very fine clayey Vertisol in the Jezreel Valley, northern Israel. The volatile organic compounds (VOCs) emitted from the biosolids before and during alkaline stabilization and after incorporation into the soil were analyzed by headspace solid-phase microextraction followed by gas chromatography-mass spectrometry. Odor concentrations at the plots were evaluated on site with a Nasal Ranger field olfactometer that sniffed over a defined land surface area through a static chamber. The odors emitted by anaerobically digested sewage sludges from three activated sludge water treatment plants had one characteristic chemical fingerprint. Alkaline stabilization emitted substantial odors associated with high concentrations of ammonia and release of nitrogen-containing VOCs and did not effectively reduce the potential odor annoyance. Odorous VOCs could be generated within the soil after biosolids incorporation, presumably because of anaerobic conditions within soil-biosolids aggregates. We propose that dimethyl disulfide and dimethyl trisulfide, which seem to be most related to the odor concentrations of biosolids-treated soil, be used as potential chemical markers for the odor annoyance associated with incorporation of anaerobically digested sewage sludges.  相似文献   

12.
Oak Ridge tank sludges that have been collected over several decades are being combined for treatment and disposal. Stabilization of the highly radioactive, mixed-waste sludges in the different tank sets has been evaluated prior to the proposed combination and treatment. This paper documents the testing of a Melton Valley Storage Tank (MVST)/Bethel Valley Evaporator Storage Tank set. Subsequent papers will discuss continued work on other tank sets and efforts to maximize the sludge loading. Grout formulations were tested in the laboratory both with a surrogate and with a sample of an actual mixed waste tank sludge from MVST W-25. Wet-sludge loadings of 50-60wt% resulted in strong wasteforms with no free water and gave a volume increase of about 40-50vol%. Resource Conservation and Recovery Act (RCRA) metals included in the surrogate testing were cadmium, chromium, lead, selenium, thallium, and mercury. The actual sludge sample was only characteristically hazardous for mercury by the Toxic Characteristic Leaching Procedure but exceeded the Universal Treatment Standard (UTS) limit for chromium. The grout formulations stabilized these two RCRA metals within UTS limits. In addition, a grout leachability index of about 9.0-10.0 was measured for both (85)Sr and (137)Cs, meeting the recommended requirement of >6.0.  相似文献   

13.
The measurement of the bed shear stress along vegetated river beds is essential for accurately predicting the water level, velocity and solute and sediment transport fluxes in computational hydroenvironmental models. Details are given herein of an experimental and theoretical study to determine the bed boundary shear stress along vegetated river beds introducing a novel field measuring method, namely the FliessWasserStammtisch (FST)-hemispheres. Although investigations have been conducted previously for sedimentary channels using the FST-hemispheres, this preliminary study is thought to be the first time that such hemispheres have been used to investigate the bed shear stresses in vegetated channels. FST-hemispheres were first developed by Statzner and Müller [1989. Standard hemispheres as indicators of flow characteristics in lotic benthos research. Freshwater Biology 21, 445-459] to act as an integrated indicator of the gross hydrodynamic stresses present near the bed. Test and validation data were found to be at least of the same order of magnitude for the stresses predicted from literature for sedimentary channels, with this study establishing the commencement of a database of calibrated FST-hemisphere laboratory data for vegetated channel beds. In a series of experiments, depths ranging from 0.1 to 0.28m were considered, equating directly to comparable conditions in small rivers or streams. The results of this study provide a basis for enabling the FST-hemispheres to be used to evaluate the boundary shear stress for a wider range of applications in the future, including vegetated river beds.  相似文献   

14.
利用黄磷厂废渣作煅烧水泥熟料的矿化剂、水泥混合材和利用黄磷厂废渣生产胶凝材、白水泥是消除黄磷渣污染环境的有效途径;通过影响黄磷渣作水泥混合材和生产胶凝材因素的研究,推荐了提高黄磷渣作水泥混合材的掺量及生产优质胶凝材的工艺条件;黄磷渣的开发利用不仅可使企业获得显著的经济效益,而且可减少磷渣堆放占用耕地和消除磷渣对环境的污染,具有显著的经济效益、社会效益和环境效益。  相似文献   

15.
Six sewage sludges from five sewage treatment plants in Australia were incubated for up to 21 months. Carbon losses at the end of the 21-mo incubation varied substantially. The remaining organic matter was isolated by treatment with hydrofluoric acid (HF) and characterized using a range of solid-state (13)C nuclear magnetic resonance (NMR) spectroscopic techniques. By every measure (signal distribution in cross polarization [CP] and Bloch decay [BD] spectra, carbon NMR observability determined by spin counting, and the appearance of proton spin relaxation editing subspectra), the chemical composition of the residual organic matter appeared to be little different from that of the original sludges, even for those sludges that experienced the greatest carbon losses. Importantly, these NMR properties distinguish sewage sludge organic matter from soil organic matter. Thus, it should be possible to follow the decomposition of sewage sludge organic matter applied to soils in the field using solid-state (13)C NMR spectroscopy.  相似文献   

16.
Sequential supercritical fluid (CO2) extraction (SSFE) was applied to eight historically contaminated soils from diverse sources with the aim to elucidate the sorption-desorption behavior of high molecular weight polycyclic aromatic hydrocarbons (PAHs). The method involved five extraction phases applying successively harsher conditions by increasing fluid temperature and density mobilizing target compounds from different soil particle sites. Two groups of soils were identified based on readily desorbing (available) PAH fractions obtained under mildest extraction conditions (e.g., readily desorbing fractions of fluoranthene and pyrene significantly varied between the soils ranging from <10 to >90%). Moreover, extraction behavior strongly correlated with molecular weight revealing decreasing available PAH fractions with increasing weight. Physicochemical soil parameters such as particle size distribution and organic dry mass were found to have no distinct effect on the sorption-desorption behavior of PAHs in the different soils. However, PAH profiles significantly correlated with readily available pollutant fractions; soils with relatively less mobile PAHs had higher proportions of five- and six-ring PAHs and vice versa. Eventually, biodegradability corresponded well with PAH recoveries under the two mildest extraction phases. However, a quantitative relationship was only established for soils with biodegradable PAHs. Out of eight soils, five showed no biodegradation including the four soils with the lowest fraction of readily desorbing PAHs. Only one soil (which was found to be highly toxic to Vibrio fischeri) did not match the overall pattern showing no PAH biodegradability but large fractions of highly mobile PAHs, concluding that mass transfer limitations may only be one of many factors governing biodegradability of PAHs.  相似文献   

17.
The influence of temperature (175 to 195°C), residence time (5 to 15 min), and sulfuric acid concentration in high (2 to 4% w/w) and low (0.5 to 1.5% w/w) levels in dilute acid pretreatment of Moringa oleifera Lam is studied. Glucose recoveries in the liquid fraction and in the hydrolyzed insoluble fraction as well as the presence of inhibitors in the liquid fraction are determined. Best experimental results are achieved at 185°C, 2% w/w acid concentration, and 5 min reaction time obtaining a glucose recovery of 83.68%. An increment in 48.81% in glucose yield compared with the one of not pretreated Moringa is obtained. 0.13 g ethanol/g Moringa from fermentation of pre-hydrolysate and hydrolysate obtained at the optimal pre-treatment conditions are obtained.  相似文献   

18.
The management system for solid and liquid organic waste affects the environment and surrounding technical systems in several ways. In order to decrease the environmental impact and resource use, biological waste treatment and alternative solutions for sewage treatment are often advocated. These alternatives include increased agricultural use of waste residuals. To analyse whether such proposed systems indicate improvements for the environment and its sustainability, systems analysis is a useful method. The changes in environmental impact and resource use is not only a result of changes in waste treatment methods, but also largely a result of changes in surrounding systems (energy and agriculture) caused by changes in waste management practices. In order to perform a systems analysis, a substance-flow simulation model, the organic waste research model (ORWARE), has been used. The results are evaluated by using methodology from life cycle assessment (LCA). An economic analysis was also performed on three of the studied scenarios. The management system for solid organic waste and sewage in the municipality of Uppsala, Sweden, was studied. Three scenarios for different treatments of solid waste were analysed: incineration with heat recovery, composting, and anaerobic digestion. These three scenarios included conventional sewage treatment. A fourth scenario reviewed was anaerobic digestion of solid waste, using urine-separating toilets and separate handling of the urine fraction. The results are only valid for the case study and under the assumptions made. In this case study anaerobic digestion result in the lowest environmental impact of all the solid waste management systems, but is costly. Economically, incineration with heat recovery is the cheapest way to treat solid waste. Composting gives environmental advantages compared to incineration methods, without significantly increased costs. Urine separation, which may be implemented together with any solid waste treatment, has great advantages, particularly in its low impact on the environment. However, there is a large increase in acidification.  相似文献   

19.
The decontamination of soils and wastes polluted with heavy metals presents one of the most intractable problems for soil clean-up. Present technology relies upon metal extraction or immobilization processes, both of which are expensive and which remove all biological activity in the soil during decontamination. They may only be appropriate for small areas of valuable redevelopment land. In this paper the use of metal-accumulating plants is explored for the removal of metals from superficially-contaminated soils such as those resulting from the long-term application to land of metal-contaminated sewage sludges. Green remediation employs plants native to metalliferous soils with a capacity to bioaccumulate metals such as zinc and nickel to concentrations greater than 2% in the aerial plant dry matter (hyperaccumulators). Growing such plants under intensive crop conditions and harvesting the dry matter is proposed as a possible method of metal removal and for ‘polishing’ contaminated agricultural soils down to metal concentrations below statutory limits. Not only are the biological activity and physical structure of soils maintained but the technique is potentially cheap, visually unobtrusive and offers the possibility of biorecovery of metals. The limitations of the process are reviewed and the future requirements for the development of efficient phytoremediators are outlined.  相似文献   

20.
Abstract

In this work, gas flow and heat transfer have been numerically investigated and analyzed for both cathode/anode ducts of proton exchange membrane (PEM) fuel cells. The simulation is conducted by solving a set of conservation equations for the whole domain consisting of a porous medium, solid structure, and flow duct. A generalized extended Darcy model is employed to investigate the flow inside the porous layer. This model accounts for the boundary-layer development, shear stress, and microscopic inertial force as well. Effects of inertial coefficient, together with permeability, effective thermal conductivity, and thickness of the porous layer on gas flow and heat transfer are investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号