首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 499 毫秒
1.
采用在线仪器监测分析2017年夏季天津气象铁塔220m观测平台大气中过氧乙酰硝酸酯(PAN)和O3的体积浓度,并结合气象观测资料和后向轨迹分析PAN和O3的输送特征.观测期间PAN和O3体积浓度平均值分别为(0.73±0.56)×10-9和(53±25)×10-9,最大小时浓度分别为3.49×10-9和137×10-9,PAN和O3体积浓度具有相似的日变化特征,白昼PAN和O3浓度高于夜间,且PAN和O3浓度相关系数(R2=0.52)显著高于夜间(R2=0.21).观测期间偏南风下PAN和O3浓度最高,偏东风下最低,风玫瑰图和后向轨迹聚类分析都表明,来源于西南方向的气流轨迹对应的污染物浓度最高,途径渤海和河北、辽宁沿海地区的偏东气流对应的PAN和O3浓度最低,边界层内输送对PAN和O3的浓度分布起到了重要作用.  相似文献   

2.
南京北郊夏季近地层臭氧及其前体物体积分数变化特征   总被引:7,自引:5,他引:2  
邵平  安俊琳  杨辉  林旭  吉东生 《环境科学》2014,35(11):4031-4043
南京北郊,钢铁、石化等重工业集中,大气污染现状不容乐观.为了研究此类重工业地区夏季光化学污染特征,于2013年5月18日~8月31日连续观测了臭氧及其前体物的浓度并同时记录了常规气象要素.结果表明,观测期间臭氧(O3)、氮氧化物(NOx)和挥发性有机物(VOCs)平均体积分数分别为(32.01±15.20)×10-9、(21.50±14.02)×10-9、(33.16±25.20)×10-9,一氧化碳(CO)为(0.66±0.44)×10-6;O3体积分数小时均值最大值达146.42×10-9;O3超过国家环境空气质量二级标准14.1%.对污染物进行浓度频率分布近似得到观测期间O3、NOx和VOCs背景体积分数分别为(5.71±2.51)×10-9、(12.20±0.36)×10-9和(22.44±0.38)×10-9,CO为(0.28±0.01)×10-6.观测点污染物受周边排放源的影响较大.在风速为2~3 m·s-1的西南风作用下,VOCs中的活性物种体积分数较高,O3体积分数容易累积达到高值;偏东风主导下主要来自周边工业源和交通源的NOx、CO和VOCs体积分数易出现高值.南京亚青期间对工业生产和部分机动车采取了调控措施,O3体积分数未明显减少,并有4 d超过国家二级标准.  相似文献   

3.
华北地区冬季和夏季大气甲醛污染特征分析   总被引:2,自引:0,他引:2  
为探究华北地区大气甲醛的污染特征,应用自主设计的一套大气甲醛在线分析仪,于2017年冬季和2018年夏季在山东省德州市开展大气甲醛综合观测实验.结果表明,德州站冬季和夏季大气甲醛小时浓度范围分别为0.15×10~(-9)~9.89×10~(-9)和0.43×10~(-9)~10.42×10~(-9),平均值分别为(3.04±1.70)×10~(-9)和(4.32±2.06)×10~(-9),结合日变化特征可知,白天甲醛、过氧乙酰基硝酸酯(PAN)和臭氧(O_3)具有较好的一致性,表明光化学生成是甲醛的主要来源;冬季夜间检测出的高浓度甲醛则表明一次排放也具有重要的贡献.此外,大气甲醛的浓度变化受相对湿度、光照、风速和湿沉降影响较大,并且湿沉降是大气甲醛去除的重要途径.  相似文献   

4.
方双喜  李邹  周凌晞  许林 《环境科学学报》2012,32(10):2568-2574
利用基于光腔衰荡光谱(CRDS)技术自组装的大气CH4在线观测系统,于2010年7月—2011年10月在云南香格里拉大气本底站对大气CH4进行了在线观测.结果发现,该站春、夏、秋、冬季CH4平均本底值分别为(1850.7±6.9)×10-9(体积分数,下同)、(1850.9±13.4)×10-9、(1865.6±16.1)×10-9和(1839.2±6.5)×10-9.全年体积分数在9月最高,12月最低,月均值振幅约39.6×10-9.4季日平均最低值均出现在14:00—16:00.日变化振幅在冬季最小,秋季最大,分别为4.4×10-9和10.0×10-9.西南来向的地面风会明显抬升CH4体积分数,而北偏东来向的地面风显著降低观测结果.通过4季每日整点后向轨迹聚类计算,结合观测资料分析发现,该站CH4主要受西南来向气团传输影响,尤其在春、夏、秋3季.  相似文献   

5.
为了研究南京夏季光化学污染特征,于2013-05-18~2015-08-31连续观测了臭氧及其前体物的浓度及气象要素。结果表明:臭氧(O3)、氮氧化物(NOx)和挥发性有机物(VOCs)平均体积分数分别为(32.01±15.20)×10-9、(21.50±14.02)×10-9、(33.16±25.20)×10-9,一氧化碳(CO)为(0.66±0.44)×10-6;O3体积分数小时均值最大值可达146.42×10-9;O3超过国家环境空气质量标准14.1%;有11 d出现霾现象,占整个观测时段的11.1%。观测点受周边源排放影响较大。在风速为2~3 m/s的西南风作用下,VOCs中的活性物种体积分数较高,O3体积分数易累积出现高值;偏东风主导下主要来自周围工业源和交通源排放的NOx、CO和VOCs等体积浓度易出现高值。臭氧产生效率(OPE)值比较低约为2.17±0.12。  相似文献   

6.
在2015年7~11月,选取我国珠江三角洲北部的广东南岭国家大气背景站为观测点,应用预浓缩-气相色谱/质谱联用等仪器进行连续在线监测,研究了大气中异戊二烯的浓度水平、干湿季变化、昼夜变化及其影响因素,并初步探讨了高浓度O_3污染天气以及典型台风天气过程对森林大气异戊二烯含量变化的影响.结果表明,广东南岭森林大气异戊二烯的平均浓度为(0.173±0.171)×10~(-9),低于国内其它大气背景站.湿季异戊二烯浓度高于干季,分别为(0.261±0.178)×10~(-9)和(0.080±0.089)×10~(-9).白天(06:00~18:00)异戊二烯浓度[(0.247±0.332)×10~(-9)]远高于夜晚[(0.071±0.129)×10~(-9)],异戊二烯浓度于06:00开始稳步升高,午后14:00达到峰值,之后逐渐降低.异戊二烯浓度水平与温度呈正指数相关关系,且湿季温度对异戊二烯浓度水平影响更加显著(R2=0.308).O_3污染日异戊二烯的日均浓度[(0.257±0.128)×10~(-9)]水平普遍高于非O_3污染日[(0.158±0.173)×10~(-9)],然而O_3污染日异戊二烯的光化学降解反应相对更为活跃.对台风"杜鹃"的分析表明,台风天气过程中外来污染气团的输送会导致森林大气异戊二烯含量显著增加.  相似文献   

7.
上海市某化工区夏季典型光化学过程VOCs特征及活性研究   总被引:3,自引:0,他引:3  
本研究基于夏季某化工区外5 km处观测点O_3及VOCs在线观测结果,分析了VOCs污染及光化学反应活性特征.结果显示,西南风向的VOCs平均体积分数为63.9×10~(-9)±28.6×10~(-9),高于其他风向42%(45.0×10~(-9)±28.0×10~(-9)),不同主导风向下的VOCs特征具有一定的相似性,均以烯烃、卤代烃和烷烃为主要组分,说明化工园区局地排放和累积对观测点VOCs影响较大.主要VOCs物种的日变化都具有夜间体积分数累积增多,白天逐步降低的特征;但是异戊二烯呈现日变化较小的特征,显示其受到人为源和天然源的双重影响.西南风向的臭氧生成潜势(Ozone Formation Potential,OFP)为242.1×10~(-9),远高于其他风向的OFP(174.1×10~(-9)),而平均MIR(Maximum Increment Reactivity)则较为接近;烯烃在VOCs总OFP中的贡献比例均在70%以上,其次是芳香烃.使用乙苯和间/对二甲苯的比值来表征气团光化学反应进程,计算得到观测点西南风向VOCs消耗量为(51.7×10~(-9)±38.8×10~(-9)),烯烃和卤代烃是最主要VOCs消耗组分.  相似文献   

8.
2011年6~8月平流输送对黄山顶污染物浓度的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
基于单条后向轨迹的滞留时间场和污染物排放强度场,设计了一种可以评估该轨迹对污染物的平流输送强度参数.利用2011年6~8月光明顶CO和O3浓度资料对该参数进行了验证,进而分析了该观测时段平流输送对光明顶污染物的影响;此外将O3浓度分成3档,利用改进的PSCF(Potential source contribution function)方法分析了各档浓度对应的源区分布.结果表明:(1)平流输送评估参数与污染物浓度的变化具有很好的一致性,表明平流输送对光明顶污染物浓度的变化具有重要作用.其中,安徽、湖北和江西三省交界区域的城市群向光明顶输送的污染物占到输送总量的一半以上;(2)光明顶O3浓度 >55×10-9、(30~55)×10-9、<30×10-9时所对应的主要源区分别为华北及长三角发达工业区、黄山西南方向的工业区、较远的南部沿海地区;(3)影响光明顶污染物浓度变化的输送类型可以分为秸秆燃烧输送、发达工业区气团输送、西南方向气团输送和海洋性气团输送4种类型,对应的污染物浓度(CO/O3)(×10-9)依次为474.47/72.50、221.16/57.71、86.31/30.41、51.67/27.45.  相似文献   

9.
天津滨海新区秋冬季大气污染特征分析   总被引:14,自引:0,他引:14       下载免费PDF全文
为了解天津滨海新区大气污染物浓度水平和污染来源,2009年9月1日~2010年2月28日对NOx、CO、SO2、O3、PM2.5、PM10进行了连续在线观测,并同步观测了气象要素.结果表明,秋冬季上述污染物最高日均值(秋冬平均值±标准差,O3为日小时均值最大值)分别达到300.7(65.4±52.9)×10-9、7.278(1.324±1.169)×10-6、53(13±12)×10-9、95(28±21)×10-9(体积分数)和287.4(62.3±53.6)μg/m3、1421.4(161.9±136) μg/m3. NOx和SO2秋季低于冬季,O3和PM10反之. CO和PM10相对国家二级标准超标率为2%和38%,PM2.5相对WHO标准(75μg/m3)超标率为31%.季节统计日变化显示CO和NOx为早晚双峰型,SO2为中午的单峰型,O3为午后单峰型,且秋季日变化振幅远大于冬季, PM10为早晚双峰型,但冬季比秋季晚出峰2~3h.除冬季PM10,大气污染物浓度49%~74%的逐日变化由气象要素影响.滨海新区大气污染受局地排放和外源输送共同影响,西南方向气流易造成污染物积累,其次是东北方向,而东和东南气流最有利于污染物扩散;各污染物具体表现为NOx主要受局地源控制;SO2主要受外来输送影响;CO和PM2.5同时受本地源和外来源的共同影响;PM10秋季表现为本地源污染,而冬季为本地源和外来源的共同影响.  相似文献   

10.
利用基于光腔衰荡光谱(CRDS)技术自组装的大气CO在线观测系统,于2010年9月~2012年2月在浙江省临安大气本底站对大气CO进行了在线观测.结果表明临安站四季CO日变化明显受人为活动影响,分别在每日07:00~10:00和19:00~20:00出现峰值,夏季CO日平均浓度和振幅均最低,分别为314.3×10-9±7.6×10-9(摩尔分数,下同)和50.1×10-9±47.9×10-9.该站全年大气CO浓度呈现冬春季高、夏季低的趋势,与北半球瑞士Jungfraujoch站、青海瓦里关等站基本一致,但平均浓度明显高于其他国际站点,全年CO月均值振幅约为286.8×10-9±19.2×10-9.后向轨迹聚类和地面风结果分析表明,临安站非本底CO浓度主要来自于N-NNE-ENE扇区内城市及工业等人为排放所引起.春、夏和冬季最大的浓度抬升均出现在ENE风向,冬季抬升值最大,约为106.3×10-9±58.0×10-9.  相似文献   

11.
邹宇  邓雪娇  李菲  殷长秦 《环境科学》2019,40(4):1634-1644
通过对广州番禺大气成分站(GPACS)的光化学相关污染物(O3、PAN、VOCs、NO2、NO)以及气象要素进行观测,分析2010~2016年期间发生在广州地区一次典型光化学污染过程.结果表明,该光化学污染过程期间,O3和PAN总体体积分数比较高,最大O3小时体积分数为140.6×10-9,而最大PAN小时体积分数为4.7×10-9.NO整体体积分数较低,对O3的化学滴定和PAN的去除影响较小.NO2整体体积分数较高、辐射较强和风速较低则有利于O3和PAN的形成和积累.PAN和O3具有一定的线性关系(R2=0.55),而形成PAN和O3前体物VOCs物种不完全相同影响着它们的线性关系,在生成PAN的VOCs物种中,乙烯、丙烷、异戊二烯和甲苯所占的比例较大,而对臭氧生成潜势较大的物种有异戊二烯、1,3,5-三甲苯、丙烯、间,对-二甲苯以及甲苯.对PA自由基体积分数进行估算,发现它的日均值体积分数在0.11×10-12~0.16×10-12范围变化,远高于其它地区,表明此次发生的光化学反应较为强烈.  相似文献   

12.
Previous measurements of peroxyacetyl nitrate(PAN) in Asian megacities were scarce and mainly conducted for relative short periods in summer. Here, we present and analyze the measurements of PAN, O3, NOx, etc., made at an urban site(CMA) in Beijing from 25 January to 22 March 2010. The hourly concentration of PAN averaged 0.70 × 10 9mol/mol(0.23 × 10 9–3.51 × 10 9mol/mol) and was well correlated with that of NO2but not O3, indicating that the variations of the winter concentrations of PAN and O3in urban Beijing are decoupled with each other. Wind conditions and transport of air masses exert very significant impacts on O3, PAN, and other species. Air masses arriving at the site originated either from the boundary layer over the highly polluted N-S-W sector or from the free troposphere over the W-N sector. The descending free-tropospheric air was rich in O3, with an average PAN/O3ratio smaller than 0.031, while the boundary layer air over the polluted sector contained higher levels of PAN and primary pollutants, with an average PAN/O3ratio of 0.11. These facts related with transport conditions can well explain the observed PAN-O3decoupling. Photochemical production is important to PAN in the winter over Beijing. The concentration of the peroxyacetyl(PA) radical was estimated to be in the range of 0.0014 × 10 12–0.0042 × 10 12 mol/mol. The contributions of the formation reaction and thermal decomposition to PAN's variation were calculated and found to be significant even in the colder period in air over Beijing, with the production exceeding the decomposition.  相似文献   

13.
甲醛(HCHO)是大气光化学重要污染物之一,为研究西南地区郊区大气夏季甲醛污染特征选取了四川省成都市新津区进行大气甲醛观测,结合NOx、O3、PAN、J-value、温湿度、风速风向、天气数据进行分析.观测期间成都市新津区夏季甲醛浓度为0.76×10-9~12.50×10-9V/V),均值为3.47×10-9±2.05×10-9V/V),呈现明显的日变化规律.结合数据分析可知,一次人为排放源在成都郊区夏季日间甲醛贡献中占比较低.观测期间甲醛受光照的影响较大,与O3、PAN、J-value普遍呈现一致的变化规律,因此成都市夏季日间甲醛主要来源为甲醛前体物的二次光化学反应.  相似文献   

14.
2020年8月利用化学放大法对合肥市西郊大气总过氧自由基RO*2·(RO2·+HO2·)体积分数进行监测,并结合O3和其前体物,分析了过氧自由基体积分数、O3生成速率和O3生成对前体物的敏感性.结果表明,观测期间总过氧自由基体积分数的日均值呈典型的单峰型变化,12:00左右出现最高值,日间峰值体积分数为43.8×10-12,日间RO*2·与太阳辐射强度、温度和O3呈明显的相关性.利用实测RO*2·和NO,获得合肥市西郊夏季O3生成速率,日间峰值为10.6×10-9h-1,O3生成速率对NO变化更为敏感.基于大气自由基和NOx(NO+NO2)反应去除速率占比(Ln/Q),对合肥...  相似文献   

15.
王峰  汪健伟  杨宁  翟菁  侯灿 《环境科学》2021,42(12):5713-5722
本文基于三维区域空气质量模式WRF-Chem,通过修改模式化学模块,量化输出过程量和诊断量,提供了一种定量分析挥发性有机化合物(VOCs)源强不确定性对O3生成影响的方法.为无法定量计算VOCs源强导致的臭氧生成率[P(O3)]偏差,以及由此对O3体积分数分布和污染控制相关联的VOCs敏感区和NOx 敏感区分布的误判提供了方法参考.采用标准统计参数对WRF-Chem模式的气象场与污染场模拟性能进行了评估,相关指标均优于前人结果.以INTEX-B(intercontinental chemical transport experiment-phase B)人为源、FINNv1(fire inventory from NCAR version 1)生物质燃烧源和 MEGAN(model of emissions of gases and aerosols from nature)生物源作为基准源,并以卫星观测数据作为约束,对排放源进行改进,评估了源改进前后臭氧生成率[P(O3)]、O3体积分数和O3控制敏感区指标(Ln/Q)的变化情况.仅人为VOCs(AVOCs)源增加68%后,P(O3)模拟峰值增升比例达13%~82%,以北京观测站点为例,P(O3)模拟月均峰值增加42%(22.5×10-9 h-1).对P(03)形成贡献比例最大的主要化学反应是HO2+NO(占比约68%),AVOCs源增加68%后,该反应贡献比例下降至65%.在改进源下,P(O3)普遍增加达到2×10-9~4×10-9h-O3各季节增幅较大的区域均主要集中在京津冀、长三角和珠三角中心城市及周边区域,与我国大型城市区基本都是VOCs敏感区的结论一致.整体而言,VOCs源强改进后,Nox敏感区O3体积分数增加幅度不大,不超过4×10-9,而部分VOCs敏感区增幅超过20 x10-9.VOCs源强的不确定性会影响O3形成过程中Nox和VOCs敏感区的判断,特别是VOCs源强明显低估会夸大VOCs敏感区的范围,从而降低O3调控对策的有效性.  相似文献   

16.
采用南京工业区2016年5月20日~8月15日这一高臭氧(O3)期的O3、O3前体物和常规气象资料数据,利用支持向量机回归(SVMr)方法分别预报O3的小时值、日最大值和最大8 h滑动平均值.结果表明,O3小时值预报的相关系数(R2)为0.84,平均绝对误差(MAE)和平均绝对百分误差(MAPE)分别为3.44×10-9和24.48,O3前期浓度、紫外B波段辐射(UVB)和NO2浓度是关键因子.O3日最大值预报的主要因子是NOx在07:00的浓度和UVB.预报O3 8 h时UVB和气温起重要作用.加入前体物项能够使O3的预报精度提升10%~28%.与多元线性回归方法相比,SVMr对O3浓度的预报有明显优势.  相似文献   

17.
黄禹  陈曦  王迎红  刘子锐  唐贵谦  李杏茹 《环境科学》2021,42(10):4602-4610
为了解华北区域光化学污染特征,于2018年5月至2019年4月在石家庄和兴隆地区利用2,4-二硝基苯肼(DNPH)对空气中的羰基化合物进行采样,并利用高效液相色谱对采集样品进行分析,以了解该区域羰基化合物的组成、体积分数、来源、·OH损耗速率和臭氧生成潜势.本研究共测定了13种含羰基的挥发性有机物,其中体积分数最高的3种物质为丙酮、甲醛和乙醛[石家庄地区:(6.46±5.25)×10-9、(3.76±2.29)×10-9和(2.65±1.74)×10-9;兴隆地区:(1.85±1.27)×10-9、(1.29±1.02)×10-9和(0.72±0.48)×10-9];C1/C2和C2/C3值表明石家庄地区工业化水平较高,受机动车尾气和化石燃料燃烧等人为排放影响较明显;兴隆地区采样点处于背景区域,受自然源影响较大;石家庄地区对L·OH贡献最大的3种物质分别为乙醛(1.77 s-1)、甲醛(1.57 s-1)和丁醛(0.42 s-1);兴隆地区对L·OH贡献最大的3种物质为分别为甲醛(0.53 s-1)、乙醛(0.47 s-1)和丁醛(0.12 s-1);对O3生成贡献最大的羰基化合物物种为甲醛和乙醛[石家庄地区:34.61×10-9(以O3计,下同)和16.73×10-9;兴隆地区:11.77×10-9和4.47×10-9],且甲醛的最大臭氧生成潜势估算(OFP)远高于乙醛.  相似文献   

18.
本文利用天津市南开大学津南校区大气环境综合观测站的臭氧及其前体物(VOCs和NOx)、气象参数等在线监测仪器,获取了2018年夏季(6~8月)小时分辨率的数据信息;分析臭氧及其前体物的相互关系及变化特征;根据光化学年龄计算出VOCs的初始浓度对其日间(06:00~24:00)VOCs体积分数的光化学损耗进行修正;将初始体积分数和直接监测的VOCs体积分数分别纳入PMF模型进行人为源的来源解析.结果表明,夏季天津O3的平均体积分数为(41.3±25.7)×10-9,而VOCs的平均体积分数为(13.9±12.3)×10-9,其中烷烃的平均体积分数(7.0±6.8)×10-9明显高于其它VOCs物种.烷烃中浓度较高的物种分别为丙烷和乙烷,占总烷烃浓度贡献的47%.夏季O3的生成潜势(OFP)平均值为52.1×10-9,其中烯烃的OFP值最高,对于TVOCs臭氧生成潜势的贡献达到57%.VOCs日间光化学损耗量计算结果表明,烯烃日间损耗占VOCs损耗总量的75%.基于初始浓度解析的VOCs来源分别为:化工排放和溶剂使用(25%)、机动车尾气(22%)、燃烧源(19%)、天然气和液化石油气(19%)和汽油挥发(15%).相比于直接将监测浓度纳入PMF解析的结果,化工排放和溶剂使用贡献百分占比下降4%,机动车尾气贡献百分占比下降5%.利用PMF源解析结果结合OFP分析不同源类对臭氧污染的相对贡献,基于初始体积分数数据的结果显示,贡献最高源类为化工排放和溶剂使用(26%).与利用直接监测数据的解析结果相比,化工排放和溶剂使用的OFP值降低7%,天然气和液化石油气的OFP值明显降低13%.  相似文献   

19.
对流层臭氧(O3)主要由氮氧化物(NOx)和挥发性有机物(VOCs)经过一系列光化学反应生成,反应过程呈现复杂的非线性关系.为深入了解O3的光化学特征及生成机制,利用2018年夏季大气O3与VOCs的观测数据,结合大气零维框架模拟模型F0AM-MCM,研究O3超标日和非O3超标日的O3光化学特征之间的差异性.观测结果表明,O3超标日期间φ(O3)和φ(TVOCs)的平均值分别为47.8×10-9和49.0×10-9,为非O3超标日期间O3(26×10-9)和TVOCs(30×10-9)体积分数的1.8倍和1.6倍.使用F0AM模型,借助EKMA曲线和RIR分析等识别O3敏感性,发现南京市O3超标日和非O3超标日O3的形成均主要受VOCs和NOx的协同控制.F0AM-MCM模拟结果表明,在O3超标日,·OH和HO2的日平均混合比分别是非O3超标日的1.3倍和1.8倍,表明O3超标日期间具有更强的大气氧化能力,且·OH和HO2的形成和损失速率也有明显的增加,表明自由基循环的增强.此外,O3超标日的O3生成速率明显高于非O3超标日,从而导致了O3超标日的O3净生成速率明显高于非O3超标日.以上发现提高了对南京夏季O3超标日大气O3光化学特征的认识.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号