首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
不同共代谢基质下四氯乙烯厌氧生物降解研究   总被引:4,自引:0,他引:4  
分别用葡萄糖、乳酸盐和醋酸盐作为驯化好的厌氧污泥的共代谢基质 ,对四氯乙烯 ( PCE)的降解进行研究。结果表明 ,PCE是通过还原脱氯发生生物降解的。实验的回归结果表明 ,反应均符合一级动力学方程 ;反应速率常数的大小依次为 k乳酸盐 >k葡萄糖 >k醋酸盐 ;以乳酸盐作为共代谢基质时 ,PCE的降解速率较快 ,在实验条件下乳酸盐是最合适的共代谢基质  相似文献   

2.
废水中难降解性有机污染物的共代谢降解   总被引:13,自引:0,他引:13  
微生物共代谢是污水中难降解性有机物生物降解的重要方式,关键酶的诱导,生长基质与目标污染物之间的竞争抑制,目标污染及其降解产物对微生物的毒性反应是影响共代谢反应的关键因素,选择合适的生长基质,优化反应条件可以提高微生物共代谢在实际污水处理有地下水污染修复中的应用效果。  相似文献   

3.
用驯化好的厌氧污泥对葡萄糖、乳酸盐和醋酸盐作为电子供体时四氯乙烯(PCE)的降解进行研究.实验结果表明,PCE是通过还原脱氯发生生物降解的.实验的回归结果表明,反应均符合一级动力学反应速率,常数的大小依次为k乳酸>k葡萄糖>k醋酸.表明乳酸盐作为电子供体时PCE的降解速率较快,说明在实验条件下乳酸盐是最合适的电子供体.并且在整个实验过程中由共代谢基质提供的电子供体不是PCE降解的限制因素.  相似文献   

4.
为更好有效去除地下水中的常见污染物芘,以萘为降解基质,利用苍白杆菌降解芘,并对反应影响因素进行了研究,模拟了反应动力学。结果表明:浓度为100 mg·L~(-1)、pH=7、25℃、萘的初始反应24 h后萘的去除率达到99.84%,芘的去除率达到37.5%。另外,菌株在萘初始浓度不同的条件下对萘的降解符合一级动力学,对芘的降解符合二级动力学。结果表明苍白杆菌在去除地下水中的萘和芘方面具有很大前景。  相似文献   

5.
用驯化好的厌氧污泥对葡萄糖、乳酸盐和醋酸盐作为电子供体时四氯乙烯(PCE)的降解进行研究。实验结果表明,PCE是通过还原脱氯发生生物降解的。实验的回归结果表明,反应均符合一级动力学反应速率,常数的大小依次为k乳酸>k葡萄糖>k醋酸。表明乳酸盐作为电子供体时PCE的降解速率较快,说明在实验条件下乳酸盐是最合适的电子供体。并且在整个实验过程中由共代谢基质提供的电子供体不是PCE降解的限制因素。  相似文献   

6.
工业溶剂三氯乙烯 (TCE)是地下水污染物中发现的最普遍的氯代化合物。本研究的目的是评价以葡萄糖为初始基质时好氧条件下TCE生物降解的可行性 ,以及以TCE为单一基质时的生物降解情况。微生物培养是在好氧条件下以驯化好的活性污泥作为接种体。实验结果表明 ,在 2 5℃时 ,葡萄糖可以在好氧条件下作为共代谢基质使TCE发生生物降解 ,其一级反应速率常数为 0 32 12d-1,半衰期为 2 16d ;TCE可以作为单一基质发生好氧生物转化 ,其一级反应速率常数为 0 2 6 2 4d-1,半衰期为 2 6 4d ;降解过程中无二氯乙烯 (DCE)和氯乙烯 (VC)等中间产物的形成 ;表明葡萄糖共代谢降解TCE的速率大于TCE作为单一基质的降解速率。  相似文献   

7.
通过生物降解实验考察三氯乙烯(TCE)在苯酚驯化微生物中的共代谢降解性能,并进行动力学分析。结果表明,苯酚是TCE-苯酚共代谢过程必不可少的共代谢基质;TCE的共代谢降解与苯酚和TCE初始浓度有关。TCE在降解初期会出现一个短暂的迟滞期,TCE的大量降解要在苯酚被利用后才发生;高质量浓度TCE(>9mg/L)对共代谢降解有抑制作用。苯酚/TCE(质量比)在10~15以上时,苯酚菌对TCE的去除率较大。Haldane模型能够很好地拟合苯酚和TCE的比降解速率。动力学分析表明,微生物对苯酚的亲和力要大于TCE,苯酚对TCE共降解具有竞争性抑制作用,TCE对微生物存在毒性抑制作用;结果证实了生物降解实验的结论。  相似文献   

8.
三氯乙烯好氧生物降解的初步研究   总被引:4,自引:0,他引:4  
工业溶剂三氯乙烯(TCE)是地下水污染物中发现的最普遍的氯代化合物。本研究的目的是评价以葡萄糖为初始基质时好氧条件下TCE生物降解的可行性,以及以TCE为单一基质时的生物降解情况。微生物培养是在好氧条件下以驯化好的活性污泥作为接种体。实验结果表明,在25℃时,葡萄糖可以在好氧条件下作为共代谢基质使TCE发生生物降解,其一级反应速率常数为0.3212d^-1,半衰期为2.16d;TCE可以作为单一基质发生好氧生物转化,其一级反应速率常数为0.2624d^-1,半衰期为2.64d;降解过程中无二氯乙烯(DCE)和氯乙烯(VC)等中间产物的形成;表明葡萄糖共代谢降解TCE的速率大于TCE作为单一基质的降解速率。  相似文献   

9.
通过批实验和柱实验研究了三氯乙烯(TCE)初始浓度、四氯乙烯(PCE)等对零价铁去除三氯乙烯的影响,并建立了三氯乙烯降解的反应动力学方程。结果表明:(1)零价铁对TCE具有较好的降解效果,反应符合准一级反应动力学方程,表观反应速率常数随TCE浓度的增加而减小;(2)在铁粉充足的条件下,TCE初始浓度对降解效果影响不显著,且TCE去除率皆可达到90%以上;(3)PCE的存在抑制了TCE的脱氯反应。PCE和TCE共存时,TCE的最大去除率仅为64.2%;TCE脱氯反应的表观反应速率明显降低,反应半衰期由TCE单独存在时的6.8~9.7 h增大到66 h~346.5 h。  相似文献   

10.
为了提高复合污染土壤修复的微生物资源的丰富度,为混合菌群修复污染土壤积累资料,利用多环芳烃-重金属双抗培养基在污染土壤中筛选得到一株对Cu和Cd有高耐受性的芘降解真菌,经分子生物学鉴定为米曲霉。探究了米曲霉对芘污染水体的降解效果及对重金属Cu和Cd的耐受程度,利用缺乏生长基质的毒性抑制动力学模型对芘单基质降解过程进行了拟合,以期为后续共代谢、固定化的研究及实际工程应用提供一定的理论支撑。结果表明:(1)米曲霉以芘为单基质代谢时,降解率为33%;(2)米曲霉对重金属Cu和Cd的耐受浓度分别为500 mg/L和50 mg/L,分别高出国家土壤重金属二级标准5倍和83倍;(3)米曲霉对单基质芘的降解符合Crridle提出的毒性抑制动力学简化模型Sc=Sc0·Tb*cX0(1-e-bt)(R2=0.9237)。芘初始浓度Sc0=80 mg/L,米曲霉投加量X0=85 mg/L时,数值拟合得到内源呼吸常数b=0.027,生物转化量Tb*c=0.2875。该米曲霉对单基质芘及重金属Cu和Cd表现出一定的降解性能及耐受性能,故可经过适当强化后作为多环芳烃-重金属污染土壤的微生物修复菌种。  相似文献   

11.
以GC-MS为分析方法,采用Pd/Fe双金属对水溶液中四氯乙烯(PCE)进行了催化还原脱氯处理,考察了PCE初始浓度、钯含量、Pd/Fe用量和溶液初始pH值等各因素对脱氯效果影响及还原动力学规律。结果表明,Pd/Fe双金属对PCE有较好的还原脱氯效率,反应遵循准一级反应动力学规律,以反应物PCE浓度为参照的反应速率常数K变化范围为0.019min^-1~0.16min^-1,对应的PCE半衰期从6min到36min,揭示反应有可能是在过量的Pd/Fe双金属表面进行。当PCE溶液初始浓度为1mmol/L,投加1.2g钯含量为0.03%的Pd/Fe双金属,在25℃下反应60min,PCE的脱氯率达到95%以上。增大钯含量和Pd/Fe用量可有效提高脱氯率,在初始pH值为弱酸性条件下有利于还原脱氯反应进行。  相似文献   

12.
臭氧/Mn2+催化降解水溶液中的2,4-二氯苯氧乙酸   总被引:1,自引:0,他引:1  
以Mn2 为催化剂与臭氧联合降解除草剂2,4-二氯苯氧乙酸(2,4-D).考察了反应温度、pH、2,4-D初始浓度和臭氧气体流量等因素对2,4-D降解效果的影响.pH对2,4-D降解效果影响很大,当pH=2.0、反应5 min时,2,4-D的去除率达99.8%;当pH=10.1、反应20min时,2,4-D的去除率仅为50.0%.反应温度升高、臭氧气体流量增加、2,4-D初始浓度降低均有助于2,4-D降解速率的提高.单独臭氧氧化2,4-D的表观反应速率常数为0.170 min-1;催化臭氧氧化2,4-D的表观反应速率常数为0.295min-1,是单独臭氧氧化的1.74倍.2,4-D的Mn2 催化臭氧反应遵循拟一级反应动力学方程.  相似文献   

13.
微生物共代谢是污水中难降解性有机物生物降解的重要方式 ,关键酶的诱导、生长基质与目标污染物之间的竞争抑制、目标污染物及其降解产物对微生物的毒性反应是影响共代谢反应的关键因素。选择合适的生长基质、优化反应条件可以提高微生物共代谢在实际污水处理及地下水污染修复中的应用效果  相似文献   

14.
以接种驯化的活性污泥为生物强化手段,通过摇瓶反应模拟生物泥浆反应器的运行,研究了受氯酚污染土壤的修复特性。结果表明,接种驯化的活性污泥可以大大加快邻氯苯酚(2-CP)的降解速率,对2-CP初始污染浓度为500 mg/kg干土的土壤,接种1%活性污泥 (w∶w)后反应11 h降解率即可达到96.4%。最适的反应条件为:活性污泥接种量1%,水土比2∶1,温度25 ℃,摇床转速200 r/min。2-CP的降解符合表观一级动力学方程;且当初始浓度为50~500 mg/kg干土时,2-CP降解速率常数随着初始浓度的增大而减小。  相似文献   

15.
高锰酸钾降解地下水中PCE的研究   总被引:2,自引:1,他引:1  
田璐  杨琦  尚海涛 《环境工程学报》2009,3(8):1355-1359
以氯代有机污染物中常见的PCE为目标污染物,以自制高锰酸钾溶液为氧化剂,采用批实验方法,探讨了高锰酸钾降解PCE的反应动力学、影响因素以及反应机理。反应结果表明,高锰酸钾降解PCE的反应符合一级动力学方程,反应活化能E为57.119 kJ/mol,在30℃条件下,反应速率常数为0.0076 min-1,半衰期为91.20 min。在pH在3~10,离子强度在0~0.1030 mol/L之间变化时,反应速率不受明显影响。  相似文献   

16.
采用旋转盘反应器(SDR)降解苯酚废水,对苯酚初始浓度、溶液p H值、H2O2的添加对其光催化降解动力学的影响进行了研究。结果表明,SDR内的光催化降解动力学特征符合一级反应动力学规律。苯酚初始浓度越低,反应速率常数k值越大;溶液p H=2时的降解速率高于其他p H值;H2O2的协同作用使苯酚的降解速率明显提高,其速率常数k值为未添加H2O2时的78倍。  相似文献   

17.
两相厌氧流化床中优势菌种降解硝基苯废水的特性   总被引:4,自引:4,他引:0  
构建了从强化传质与优势菌相结合的两相厌氧流化床生物降解体系,考察了水力停留时间(HRT)与上流速度2种水力特征以及共基质、pH、进水浓度等主要过程因素对优势菌种降解硝基苯的影响.结果显示,反应器在HRT为36h、上流速度为4 m/h时获得较好的处理效果;菌种需要pH 7.5的条件下以葡萄糖为共基质降解硝基苯,且两者的最佳质量比约为6;当进水硝基苯浓度为50~345 mg/L时,对硝基苯平均降解率和降解速率分别达到91.1%和120.9 mg/(L·d),且可耐受2.5倍以内的浓度负荷冲击.由此表明良好的反应器水力条件及优势菌种的结合可使高毒性的硝基苯在厌氧条件下有效地降解.  相似文献   

18.
结合Fenton氧化反应动力学模型研究了Fenton氧化水中间氯硝基苯(m-ClNB)的影响因素和降解机制.结果表明:(1)反应初始pH、H2O2浓度、Fe2+浓度、污染物初始浓度和反应温度对m-ClNB的降解均有明显影响.在反应初始pH为3.5、m-ClNB初始摩尔浓度为0.444mmol/L、H2O2摩尔浓度为21.55mmol/L、Fe2+摩尔浓度为0.054mmol/L、反应温度为(25土1)℃的条件下,m-ClNB的去除效果较好.(2)建立了Fenton氧化m-ClNB的准一级反应动力学模型,且m-ClNB的降解与该模型拟合良好.基于不同反应温度时的准一级反应速率常数(kap),得到了m-ClNB降解的阿累尼乌斯公式,且活化能为36.51kJ/mol.(3)气相色谱(GC)/质谱(MS)和高效液相色谱(HPLC)/MS分析表明,Fenton氧化m-ClNB的主要产物有4-氯-2-硝基苯酚及其同分异构体、羟基乙酸、草酸、丁二酸、丙二酸、6-氯己酸、乙醛酸、2,2-二羟基丙二酸和2-乙基丙二酸等.  相似文献   

19.
为了研究固定化微生物在土壤生物修复中的应用,以实验室筛选出来的高效降解菌 Q5 为生物活性物质,利用生物大分子仿生合成出的纳米多孔氧化硅为载体,通过表面吸附同定化方法将其固定,制备出固定化微生物.考察固定化微牛物初始 pH 值、温度、摇床转速和菌种的接种量对喹啉去除的影响,得到适宜的去除条件,在相同条件下比较固定化微生物与游离菌种对底物的去除情况,研究单一固定化菌种对不同浓度的喹啉的去除情况,考察固定化微生物的稳定性.实验结果表明,菌株 Q5 经固定化后,对喹啉的去除能力大大增强,在 500 mg/L 浓度下,40 h 固定化 Q5 对底物去除率达96.6%,远高于未固定化 Q5 的去除率 56.1%;对于高底物浓度,固定化微生物的去除效果明显,初始底物浓度为1 500 mg/L,反应 70 h 后去除率为 91.6%,且这种固定化微生物的重复使用性能良好.  相似文献   

20.
以水稻秸秆生物炭和纳米铁粉为原材料制备炭基纳米铁粉,并利用其降解土壤中的2,4-二氯苯氧乙酸(2,4-D),考察了不同2,4-D初始浓度、pH、温度以及超声波存在条件下对2,4-D降解的影响,分析了炭基纳米铁粉对2,4-D的降解机制。结果表明:在炭基纳米铁粉添加量为0.5%(质量分数),2,4-D初始质量浓度为10 mg/L,溶液pH为4.5,温度25℃的试验条件下,16h后2,4-D降解率可以达到88.0%;随着2,4-D初始浓度的增加,2,4-D降解率显著降低,但2,4-D降解的表观速率常数变化不大;反应体系温度的升高会加快2,4-D的降解速率;试验得出2,4-D降解脱氯反应的活化能为24.50kJ/mol,说明脱氯反应是由表面化学反应所主导;较低pH和400 W超声波的存在更有利于炭基纳米铁粉对土壤中2,4-D的降解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号