首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
使用大气挥发性有机物(VOCs)在线连续自动监测系统,对滕州市木石镇2019年11月环境空气中VOCs进行观测,并分析了VOCs的浓度状况、组成特征、光化学影响和来源。结果表明:观测期间,木石镇大气中TVOC平均体积分数为(32.75±28.96)×10-9,各物种体积分数从大到小顺序依次为烷烃>烯烃>OVOC>芳香烃>卤代烃>乙炔>含硫化合物;日变化规律呈双峰型,峰值在6:00~7:00时与0:00~1:00时出现。大气VOCs的平均臭氧生成潜势(OFP)为102.02×10-9,烯烃对臭氧生成潜势贡献率最大,为69.5%;乙烯、丙烯、正丁烯、萘和1,3-丁二烯等是臭氧生成潜势较高的物种。对OH自由基消耗速率(LOH)贡献最大的为烯烃,其次为芳香烃,两者贡献率占到76.8%。VOCs对二次气溶胶(SOA)浓度的贡献值为0.85μg/m3,其中芳香烃对SOA生成贡献占比为92.8%,对SOA生成贡献最大的前5个物种为萘、甲苯、苯、乙苯、间/对二甲苯。利用PMF模型...  相似文献   

2.
为了解廊坊市夏季O3骤增骤降污染天气过程中VOCs浓度及臭氧生成潜势的变化特征,统计分析2016年~2020年夏季廊坊市区监测所得的53种VOCs质量浓度数据和近地面臭氧(O3)浓度数据,并采用臭氧生成潜势方法估算VOCs对O3生成的贡献进行分析。结果表明:整个污染过程及不同时段,烷烃类总质量浓度最大,占比在62%~65%之间,其次是烯/炔烃类和芳香烃类,而烯/炔烃类的臭氧生成潜势(OFP)最大,高浓度阶段其百分比(OFP*)较骤增前、骤降后高6.5和3.8个百分点,其次是烷烃或芳香烃。O3骤增骤降污染整个过程及不同阶段,VOCs质量浓度最大的前十物种中烷烃类占有5~7种,OFP前十位中烯/炔烃占有5~6种,两种统计中相同物种有9个,OFP*前十VOCs物种相对固定,前7位以烯/炔烃为主,反-2-丁烯最高。控制或减少反-2-丁烯等重要烯/炔烃类VOCs物质的排放,可有效控制廊坊O3的生成,降低O3污染程度。通过研...  相似文献   

3.
挥发性有机物(VOCs)在臭氧生成中起着关键作用。通过分析2018年8月19日至22日在湖南省某地区开展的VOCs在线连续监测发现,VOCs浓度大小依次表现为烷烃烯烃芳香烃。进一步分析相关VOCs的臭氧生成潜势(OFP)得知,芳香烃、烯烃是臭氧生成的主要贡献源。利用正交矩阵因子模型(PMF)对VOCs进行来源解析,结果显示在监测期间涂料和溶剂使用、汽油车尾气排放为两大主要的污染源,结合风向分析,污染源主要来自监测点位西南方向的汽车产业园和高速公路车流。  相似文献   

4.
为探究菏泽市大气醛酮类化合物污染特征,分析菏泽市2022年5—9月大气醛酮类化合物监测结果,计算臭氧生成潜势,同时利用相关系数法和比值法分析醛酮污染物可能来源。研究表明:菏泽市大气主要的醛酮类化合物为甲醛、乙醛和丙酮;臭氧生成潜势贡献较大的主要是甲醛和乙醛;菏泽市大气醛酮类化合物中甲醛、乙醛、丙酮有强相关性,三者可能有相同来源,其中甲醛和乙醛浓度比为1.07,符合城市大气特征,即主要受人为源的影响。  相似文献   

5.
为研究2019年江苏省一次专项管控期间VOCs浓度的变化情况,于8月13日~9月30日在13个设区市重点工业园区开展VOCs连续观测,分析江苏省工业园区VOCs浓度现状及分布特征,对各市工业园区管控期间VOCs的减排效果进行评估并给出相应对策建议。结果表明:VOCs是江苏省臭氧生成的主要前体物,13个设区市典型工业园区VOCs体积浓度为26.2×10-9,呈现“南高北低”态势,烷烃、烯烃、炔烃和芳香烃物种对臭氧生成贡献的占比分别为16.7%、44.0%、0.6%和39.1%;管控有效减缓了臭氧浓度上升的幅度,但不同地区对臭氧的生成贡献较大的物种不同,建立优先控制物种数据库,既达到调控目的,又减少对社会经济的影响。  相似文献   

6.
利用在线挥发性有机物自动监测仪TH300B对2020年8月12—17日南通市典型臭氧污染过程中VOCs排放进行监测。结果表明,南通市此次臭氧污染过程主要受VOCs排放影响,污染中VOCs体积浓度均值为23.44 ppb,较污染前下降了12.0%,其中芳香烃体积浓度占比下降幅度最大,较污染前下降23.4%,OVOCs体积浓度绝对值下降最大,较污染前下降1.42 ppb。污染中,VOCs总OFP贡献为162.0μg/m3,较污染前下降22.2%,OPF与臭氧的日变化呈明显的相反关系,关键活性物种为甲苯、乙烯和异戊烷等。PMF模型解析结果显示,机动车尾气、工业排放、油气挥发、涂料和溶剂使用、天然气源对VOCs的贡献占比分别为38.6%,35.4%,9.5%,8.8%和7.8%。  相似文献   

7.
2020年4月28日~5月6日成都出现了一次近5年来春末夏初时段污染时间最长,污染程度最重的臭氧污染过程.为了解该污染过程中VOCs对成都臭氧的贡献,通过采用数理统计、臭氧生成潜势(OFP)等方法,对成都市城区VOCs进行分析.结果表明,成都市城区污染前与污染后VOCs体积分数均低于污染中VOCs体积分数. VOCs日变化呈双峰性,分别出现在早高峰时段及凌晨.污染前、污染中、污染后臭氧生成潜势(OFP)浓度值分别为110.5、199.0、93.3μg/m3.间/对二甲苯、乙烯、甲苯和邻二甲苯为绝对优势物种.通过分析整个污染过程VOCs特征,为成都春季臭氧污染防治提供技术支撑.  相似文献   

8.
臭氧是光化学反应的重要产物,反映空气质量的重要指标之一,对空气中臭氧浓度变化规律及影响因素开展研究,对大气污染防治具有重要的意义。利用2021年嘉兴市区环境空气质量自动监测站监测结果与相关气象资料,统计了嘉兴市区近地面臭氧污染分布特征,利用Pearson相关性分析了气象要素及前体物NO2对臭氧浓度的影响,利用最大增量反应活性系数法分析了不同VOCs组分对臭氧生成重要性评估。结果表明,2021年嘉兴市区臭氧浓度月度变化呈“M”型,超标主要出现在5~9月;日变化呈单峰型。臭氧浓度与气温为显著正相关,与相对湿度和气压均为负相关,降水有利于臭氧浓度的降低。白天当风向为西南、南或东南风,风速大于4m/s时,臭氧浓度较高。NO2与臭氧显著负相关,VOCs中芳香烃对臭氧生成潜势最大。综合现有研究,气象要素及NO2对嘉兴市区臭氧污染的影响不可忽略,芳香烃对嘉兴市区臭氧生成贡献显著,是臭氧污染优先治理的重要前体物。  相似文献   

9.
为了解南充城区秋季大气环境中挥发性有机物(VOCs)的污染特征及来源,2018年11月7日~11月15日,利用在线GC-MS对南充城区的VOCs成分进行了连续在线监测,并运用PMF模型对VOCs的来源进行了解析。结果表明:监测期间,南充城区的VOCs共检出103种,小时平均体积分数约为(32.5±5.7)×10-9,由烷烃、含氧挥发性有机物(OVOCs)、芳香烃、烯烃、卤代烃等组成,占比分别为38.5%、31.7%、10.2%、9.5%和8.0%;各类污染物中烯烃对总臭氧生成潜势(OFP)的贡献度最大,占32.6%,OVOCs次之(31.7%),其余依次为芳香烃(26.0%)、烷烃(8.3%)和卤代烃(1.1%);VOCs的日变化总体呈现两高两低的趋势,但变化幅度较小,VOCs与NO 2、CO、PM 2.5和PM 10浓度呈正相关关系,与O 3的浓度呈负相关关系;运用PMF模型共解析出道路交通源、工业源、油气挥发、燃料燃烧和餐饮油烟5个因子,道路交通源是南充城区秋季大气环境VOCs最大贡献源(29.3%),其次为工业源(26.1%)和油气挥发(23.0%),燃料燃烧(14.4%)和餐饮油烟(7.2%)的贡献最小。相关分析表明:南充城区秋季大气环境中的VOCs受机动车尾气、工业溶剂、油气挥发和生物质燃烧的影响较大,建议后期应重点关注这4类污染源。  相似文献   

10.
采用SUMMA罐采样,空气预浓缩与气相色谱/质谱联用技术,对攀枝花市11个道路点位的空气挥发性有机物进行了分析。定性检出挥发性有机物68种,其中烃类占47.1%,卤代烃类占32.4%,含氧化合物占19.1%,其它化合物占1.5%。其中检出的烃类以烷烃为主,烷烃占检出总数量的20.6%,烯烃占11.8%,芳香烃占14.7%。定量二甲苯的平均质量浓度为6.65μg/m~3,甲苯6.05μg/m~3,三甲苯4.71μg/m~3,苯3.65μg/m~3,乙苯1.52μg/m~3。VOCs检出种类数量顺序为隧道主干路快速路支路对照点。  相似文献   

11.
利用挥发性有机物在线监测仪(GC-FID/MS)在成都市市区开展为期一个月的挥发性有机物监测,分析了VOCs浓度水平、组分构成、日变化规律,并分别利用PMF模型和排放清单法对VOCs的来源进行解析研究。结果表明,监测期间,VOCs小时平均浓度为7610~(-9),最高浓度为26210~(-9),最低浓度为14.810~(-9);监测物种类别中烷烃类占VOCs总体积浓度为38%,炔烃为17%,芳香烃为15%,烯烃为13%,卤代烃为9%,含氧(氮)类化合物为8%,浓度前十的物种分别为乙烷、乙炔、乙烯、丙烷、甲苯、己醛、二氯甲烷、苯、正丁烷和异戊烷,占总浓度的70%以上。烷烃、炔烃、烯烃、芳香烃在8点~10点间均出现浓度峰值,芳香烃、卤代烃以及含氧(氮)化合物浓度最高值出现在凌晨2点~5点;最低浓度则均出现在下午17点左右。基于PMF的方法,VOCs的来源解析结果为工业源贡献32%,机动车贡献26%,生物质燃烧贡献22%,溶剂源贡献7%,油气挥发贡献6%,本底混合源贡献7%;基于排放清单法,2015年成都市VOCs年排放量为36.9万t,工艺过程源、溶剂使用源、移动源分别贡献32%、32%、30%。  相似文献   

12.
选取南京市典型的8家汽车维修企业,采集喷涂工艺过程产生的VOCs样品,使用气相色谱/质谱系统对样品进行检测,建立南京市汽车维修行业VOCs排放的化学成分谱,并计算其臭氧生成潜势。结果表明,苯系物是汽车维修行业生成O3的优势VOCs成分,芳香烃是化学反应活性最强的VOCs组分。  相似文献   

13.
冯程  肖况  贾凤菊  李琳 《四川环境》2023,(1):114-120
成都市2020年4月15~16日和4月28~5月6日分别发生了细颗粒物(PM2.5)污染过程和臭氧(O3)污染过程,利用2020年4月13~5月10日成都市区57种挥发性有机物(VOCs)小时数据,研究两次污染过程中VOCs对PM2.5污染和O3污染的影响。通过计算VOCs的臭氧生成潜势(OFP)、二次有机气溶胶生成潜势(SOAFP),以及使用比值分析法,探讨成都市VOCs优先控制物种及来源。结果表明,污染时段VOCs浓度较清洁时段均有所升高,但烷烃占比有所下降。污染时段的OFP和SOAFP较清洁时段均有所升高,间/对二甲苯和甲苯对SOA生成和O3生成贡献均排名前列,控制这两种组分的排放是成都市控制O3和SOA前体物的有效途径。比值分析结果得出,VOCs气团受本地排放影响较大,PM2.5污染时段和清洁时段的VOCs受机动车尾气排放影响较多,O3污染时段的VOCs除受到机动车尾气排放影响以外,还受溶剂使用的影响。作...  相似文献   

14.
基于四川省环境统计数据及相关资料,采用排放因子法计算得到宜宾市2014年VOCs排放量,同时估算了各污染源臭氧生成潜势。宜宾市各污染源2014年度排放VOCs共3.2万t,最主要的排放行业是工业过程源、道路移动源及溶剂使用源,分别占37%,22%和16%。宜宾市的臭氧生成潜势总量为9.5万t,移动源的贡献率最高,达37%,其次工业过程源和溶剂使用源分别贡献21%和17%。  相似文献   

15.
为加强绍兴某化工区大气挥发性有机物(VOCs)污染的精准化监管,有效降低臭氧污染,利用装载单质谱仪与便携式气相色谱质谱仪的走航车对绍兴市某化工区进行126次走航监测。通过VOCs总量实时监测,异常点位定性定量分析相结合的方法,掌握该化工区大气VOCs污染状况,确定VOCs重点污染区域,选取臭氧前体物作为VOCs管控的关键因子。通过臭氧生成潜势分析,筛选出6个臭氧生成潜势较大区域和7种贡献较高的物质,作为重点监管区域与臭氧生成贡献优控因子,结合污染源调查结果,确定化工区内化学药品原料药制造行业、化学农药制造行业是主要的排放源;建议加强上述物质和区域行业的日常监管,降低臭氧前体物的排放,从而帮助环境监管部门实现精准化监管,减少大气臭氧污染,为打赢蓝天保卫战提供有力保障。  相似文献   

16.
利用2015年四川省21个城市空气环境质量监测资料,开展区域污染、燃放烟花爆竹、秸秆焚烧等典型污染类型对城市环境空气中PM_(2.5)污染贡献的研究,得到上述3种典型环境空气污染类型对四川省城市环境空气中PM_(2.5)污染贡献比例分别为13.62%、0.75%、3.11%,常态下PM_(2.5)污染贡献比例为82.52%,贡献浓度分别6.46μg/m~3、0.35μg/m~3、1.47μg/m~3,39.22μg/m~3,最后提出了大气污染防治方向。  相似文献   

17.
为弄清石化工业行业挥发性有机污染物(Volatile Organic Compounds,VOCs)的排放、分布情况及其对周边大气的影响,采用真空罐采集/预冷浓缩富集-气相色谱氢火焰离子化检测器/质谱法,对某石化园区大气中119种VOCs的组成特征及空间分布进行了研究。结果表明,该石化园区大气中烷烃、烯烃及含氧化合物占据主导地位,三者分别占总挥发性有机物含量的42.85%、21.50%及27.44%,采用最大增量活性浓度(Maximum Incremental Reactivity,MIR)算法计算三者对该园区大气臭氧生成的贡献率分别为8.87%、59.72%、26.43%,另外,通过对比不同点位及高度大气中VOCs组成发现,不同种类的VOCs在0~50m高度范围内的分布特征不同。本研究结果为石油化工行业VOCs排放的监测监管提供了可靠的技术支持。  相似文献   

18.
为研究人造板制造企业VOCs排放特征及源成分谱,通过现场采样的方法,对A和B两家典型人造板制造企业VOCs各排放环节进行了采样和分析。结果表明:调胶、施胶排放口VOCs和甲醛排放浓度均最高,分别为13. 06 mg/m~3和33. 23mg/m~3。对于无组织排放,调胶工段的VOCs和甲醛排放浓度相对较高。A企业和B企业的VOCs排放系数分别为13. 4 g/m~3和208. 3 g/m~3,排放系数差异较大与企业原辅料的种类及使用量有关。人造板制造业有组织排放VOCs以含氧VOC和烷烃为主,浓度占比排名前三的物种为乙醇、丙酮和癸烷,占比分别为57. 38%、13. 04%和7. 64%。无组织排放VOCs则以含氧VOC和芳香烃为主,浓度占比排名前三的物种为乙醇、苯乙烯和丙酮,占比分别为22. 33%,8. 51%和8. 47%。  相似文献   

19.
十堰市汽车涂装VOCs污染状况及变化趋势分析   总被引:2,自引:0,他引:2  
通过调查,初步摸清了十堰市汽车涂装行业的规模、产生VOCs的原辅材料消耗情况及污染治理情况,在此基础上,冬季、春季采样监测十堰市VOCs的环境背景值及污染现状。结果表明,VOCs在十堰各点位均有检出,但不同季节VOCs的浓度不同,总VOCs平均浓度1月份为2 113.29μg/m3,5月份为1 816.70μg/m3。各采样点VOCs质量浓度排序是:工业区商业区办公居住区。十堰市VOCs的日变化情况与工业区内工厂生产作业情况密切相关,通过对苯系物相关性的研究,得知涂料喷涂行业是十堰大气中苯及VOCs的重要来源。  相似文献   

20.
高效液相色谱法测定环境空气中酰胺类化合物,采用多孔玻板吸收管采集环境空气中的酰胺类化合物,吸收液经0.22μm膜过滤后,经C18色谱柱分离,采用紫外检测器检测。丙烯酰胺、二甲基甲酰胺、二甲基乙酰胺的检出限分别为0.04μg/m3、0.000 2 mg/m3、0.000 2mg/m3(10 ml吸收液,采集15 L环境空气样品计)。高、中、低三种浓度三种酰胺类化合物的回收率区间为70.8%~90.2%,相对标准偏差范围小于9.6%。该方法操作简单,结果准确、可靠,适用于环境空气中酰胺类化合物的快速、准确监测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号