首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
利用杭州市日均空气污染物浓度与呼吸系统疾病门诊人数数据,结合泊松广义相加模型(GAM)和反向传输(BP)神经网络模型,评价该区域主要空气污染物对居民呼吸系统疾病的影响,并进行短期门诊人数预测,结果表明:PM_(2.5)、PM_(10)、NO_2和SO_2每增加1个四分位间距(IQR)时,对呼吸系统疾病门诊人数的相对危险度(RR)最大值分别为1.030(95%置信区间(CI):1.016~1.045)、1.063(95%CI:1.043~1.084)、1.053(95%CI:1.016~1.091)和1.025(95%CI:1.003~1.048),且分别在滞后3、2、4、3d时达到最大值,可见PM_(2.5)、PM_(10)、SO_2和NO_2对呼吸系统疾病存在滞后效应。BP神经网络模型对呼吸系统疾病门诊人数的预测值与实际值接近,且平均相对误差为13.821%,说明BP神经网络模型可用于呼吸系统疾病门诊人数的短期预测。  相似文献   

2.
基于双权重模糊综合评判的南京空气质量评价   总被引:1,自引:0,他引:1  
为了更加合理地评价空气污染程度,基于传统的浓度超标赋权单因子法,将污染物毒性纳入考虑,建立了双权重因子模糊综合评价模型,并应用于南京市空气质量评价。双权重评价结果与浓度超标赋权单因子法评价结果对比如下:南京市空气主要污染物为PM_(2.5)、PM_(10)和NO_23种,2013—2016年空气质量逐年改善,夏秋季节空气质量明显优于冬春季节。双权重因子模型计算所得的PM_(2.5)的空气污染权重是单因子法的2倍,PM_(2.5)与PM_(10)所占的空气污染权重占60%以上,显著高于其他污染因子,这是由于颗粒污染物较强的毒性所致。相对于单因子法,双因子权重法考虑了不同污染因子的危害程度,是一种更客观的空气污染评价方法。  相似文献   

3.
使用β射线法在线监测仪连续监测了贵阳市白云区PM_(10)和PM_(2.5)浓度,分析了2014年6月1日—12月31日7个月内PM_(10)、PM_(2.5)的浓度水平、时变规律和PM_(2.5)/PM_(10)的变化情况。结果表明,监测时段内PM_(10)和PM_(2.5)的日均浓度平均值分别为76.8μg/m~3和40.0μg/m~3,均达到国家二级标准;浓度超标的天数占总观测天数的5.1%和9.3%,属污染轻微的地区。PM_(2.5)/PM_(10)在25.3%~78.8%之间周期性波动,平均值为52.1%。PM_(10)和PM_(2.5)的浓度变化具有很好的正相关性(r=0.919 8,p0.000 1);日均值在7个月中呈现明显的周期性变化,各月相对稳定,12月的PM_(10)和PM_(2.5)浓度最高且变化最为剧烈,6月最为平缓。PM_(10)和PM_(2.5)浓度小时变化总体上呈双峰型分布,最高值出现在出现在09:00—10:00和19:00—21:00前后,最低值出现在14:00—17:00之间。  相似文献   

4.
无锡市区大气污染物污染特征及影响因素研究   总被引:1,自引:0,他引:1  
利用2014年无锡市区的6种大气污染物浓度和气象因子等监测数据,研究了无锡市区各种大气污染物的污染特征及其影响因素。结果表明:(1)无锡市区PM_(2.5)、PM_(10)、SO_2、NO_2、CO浓度的季节变化特征为冬季最高,夏季最低;O_3浓度表现为夏季最高,冬季最低。就全年的综合情况而言,颗粒物污染,尤其是PM_(2.5)污染最严重。(2)PM_(2.5)、PM_(10)、SO_2、NO_2、CO浓度间两两呈正相关;PM_(2.5)、SO_2、NO_2、CO浓度均与O_3浓度呈负相关。(3)温度与PM_(2.5)、PM_(10)、SO_2、NO_2、CO浓度呈负相关,与O_3浓度呈正相关;相对湿度与PM_(2.5)、PM_(10)、SO_2、NO_2、O_3浓度呈负相关,与CO浓度无相关性;风级与PM_(2.5)、PM_(10)、SO_2、NO_2、CO浓度呈负相关,与O_3浓度无相关性。降水有利于PM_(2.5)、PM_(10)、SO_2、NO_2、O_3浓度的降低,但对CO浓度影响不大。(4)无锡市区空气质量周末比工作日差。NO_2、SO_2浓度周末低于工作日,O_3浓度周末高于工作日,呈现明显的"周末效应";PM_(2.5)、CO浓度周末高于工作日,未出现"周末效应"。  相似文献   

5.
基于光散射法研制了一种PM_(2.5)在线监测系统,运用该系统对PM_(2.5)质量浓度进行实时监测。鉴于PM_(2.5)在空气质量评价中仅作为一个参考指标,专门针对PM_(2.5)的评价机制研究较少,将层次分析法与模糊评价法相结合,对一段时间内PM_(2.5)的浓度进行评价,得到时段内空气PM_(2.5)的质量状况。模糊评价法可很好地反映评价等级划分的模糊性和连续性,层次分析法能够将复杂的系统进行定量处理,评价结果符合实际情况。  相似文献   

6.
分析了2016年杭州市G20峰会保障期间(8月24日至9月6日)的环境空气质量,利用WRF-CMAQ模型研究了区域传输对杭州市G20峰会保障期间PM_(2.5)和O_3污染的影响。结果表明,G20峰会保障期间,杭州市PM_(2.5)日均质量浓度平均值为31.3μg/m~3,逐日浓度均达到《环境空气质量标准》(GB 3095—2012)二级标准(75μg/m~3)的要求,8月31日出现PM_(2.5)浓度上升趋势,9月1日达到最高47.0μg/m~3;O_3最大8h质量浓度平均值为159.9μg/m~3,8月24日至25日和8月28日至31日两个时段O_3浓度出现了超过GB 3095—2012二级标准(160μg/m~3)的情况。杭州市本地减排对PM_(2.5)浓度下降贡献70%,浙江省其他地市贡献16%,江苏省、上海市以及安徽省与江西省分别贡献了8%、4%、2%,区域联防联控对杭州市PM_(2.5)浓度的改善具一定的作用。精准控制上风向O_3前体物排放可在一定程度上缓解杭州市的O_3污染。  相似文献   

7.
于2017年1—5月(取暖季)在西宁市区、郊区、农村设置采样点采集PM_(2.5)样品,利用离子色谱法测定PM_(2.5)中水溶性无机离子浓度。结果表明:取暖季西宁大气PM_(2.5)日均质量浓度为(55.98±52.66)μg/m~3,呈现明显的市区郊区农村的浓度变化特征。PM_(2.5)中水溶性离子质量浓度之和占PM_(2.5)质量浓度的36.3%,水溶性离子平均浓度大小为SO_4~(2-)NO_3~-NH_4~+Na~+Cl~-C_2O_4~(2-)Ca~(2+)F~-K~+Mg~(2+);取暖季西宁大气硫氧化率(SOR)和氮氧化率(NOR)平均值分别为0.21、0.13,表明SO_4~(2-)、NO_3~-主要由二次转化形成,PM_(2.5)中NO_3~-/SO_4~(2-)(质量浓度比)为0.75,阳离子与阴离子电荷摩尔数比值为0.89,表明燃煤是PM_(2.5)主要贡献源,颗粒物总体呈酸性。后向轨迹分析表明,重污染期间西宁PM_(2.5)及其中水溶性离子的浓度变化不仅受本地污染源的影响,也受外来气团输送的影响。  相似文献   

8.
地铁是人们出行的重要交通方式,车厢内颗粒物污染可影响人体健康。2016年春、秋、冬季对北京地铁1号、2号、4号、10号线进行现场监测,探讨北京地铁车厢内颗粒物污染特征。研究结果表明,北京地铁车厢内PM_(2.5)平均浓度超标率为83.8%~98.7%,地铁1号线PM_(10)平均浓度超标率为59.6%。地铁车厢内PM_(2.5)和PM_(10)浓度存在工作日和周末组间显著性差异,表明客运量对车厢内颗粒物浓度有较大影响。地铁车厢内PM_(2.5)和PM_(10)浓度存在季节性差异,冬季车厢内颗粒物平均浓度最高。不同线路车厢内PM_(2.5)和PM_(10)浓度存在组间差异,地铁通风空调系统、门系统和客运量是造成其差异的主要原因。  相似文献   

9.
利用2013年、2014年10月1日至11月13日的污染物浓度监测资料,重点研究了APEC会议前后内蒙古重点城市呼和浩特市.包头市的污染物特征,并与历史同期进行对比。结果表明:(1)APEC会议期间(11月1—12日),呼和浩特市污染日为0d,包头市污染日为2d,比2013年同期分别下降100%、75%;(2)研究期间、呼和浩特市、包头市各污染物日均浓度随时间的变化趋势相似。2014年10月25日政府启动防控措施,两城市各污染物日均浓度明显下降,大幅低于2013年同期;(3)减排前,2014年10月22—24日为呼和浩特市、包头市持续污染期。主要污染物PM_(10)、PM_(2.5)的小时浓度特征与2013年同期相似;(4)不利的气象条件造成2013年10月22日至11月上旬内蒙古重点城市持续空气污染。2014年同期气象条件更差,但10月25日实施减排后,空气污染物迅速消散。  相似文献   

10.
采暖期重污染天气频发,成为大气环境质量改善的难点。汾渭平原刚被划为中国环境治理的重点区域,大气污染形势十分严峻。基于2014—2018年PM2.5、SO_2、NO_2、O_3和CO等污染物监测数据及空气质量指数,分析了汾渭平原采暖期和非采暖期大气环境质量的时空变化特征。结果表明:(1)采暖期PM_(2.5)、SO_2、NO_2和CO浓度均高于非采暖期,非采暖期PM_(2.5)相比采暖期低42%~54%,采暖期SO_2、NO_2和CO的平均浓度分别是非采暖期的2.7、1.5、1.6倍,而非采暖期O_3平均浓度是采暖期的2.2倍;(2)PM_(2.5)和SO_2为采暖期首要污染物,O_3为非采暖期首要污染物;(3)采暖期和非采暖期三省交界处和临汾的PM2.5浓度均较高,采暖期气态污染物的空间分布与非采暖期基本相似,其中SO_2浓度的空间分布为山西境内河南境内陕西境内;(4)采暖期PM_(2.5)与SO_2、NO_2、CO浓度均呈正相关,与O_3呈负相关,非采暖期SO_2、NO_2和CO随PM_(2.5)浓度呈一致变化趋势,均先上升后下降,与采暖期的变化趋势并不相同;(5)采暖对PM_(2.5)和SO_2的年平均贡献率分别为34.9%和42.1%。  相似文献   

11.
2015年7月3—17日,采集天津3条典型道路路边道路交通环境中不同粒径段的PM_(2.5)样品,分析其中的12种金属元素,并开展健康风险评价。结果表明:(1)3种典型道路上PM_(2.5)均超过《环境空气质量标准》(GB 3095—2012)中二级日均限值(75μg/m~3)。主干道、次干道、快速路上PM_(2.5)中金属元素累计质量浓度分别为0.68、0.74、0.67μg/m3。(2)多数金属元素的粒径分布存在明显差异。Zn和Cu为轮胎和刹车片磨损标志物,峰值在较大粒径颗粒物上。Sb通常作为添加剂以Sb2S3的形式加入到刹车片中,峰值出现在0.2~1.0μm粒径段。(3)Cr、Co、Ni、Cu、Zn、As、Cd、Sn、Sb和Pb的富集因子10,受到人为源的作用。对于儿童和成人群体,全部道路路边环境的非致癌风险危险指数均大于1,具有非致癌风险。PM_(2.5)中Cr、Co、Ni、As、Cd的致癌风险基本上均超过美国环境保护署推荐的可接受风险阈值(10-6),具有明显的致癌效应。  相似文献   

12.
基于2014—2016年广州PM_(2.5)浓度逐时观测数据,研究了广州PM_(2.5)污染变化特征及其与气象因子的关系,确定了影响广州大气能见度的PM_(2.5)浓度阈值。结果表明:(1)2014—2016年广州PM_(2.5)质量浓度平均为32.7μg/m3,广州1月PM_(2.5)污染最重,轻度、中度、重度污染频率合计达20.16%;(2)PM_(2.5)浓度与风速、降水、气温、能见度呈负相关,与相对湿度、气压呈正相关;(3)广州地区在南风的条件下PM_(2.5)浓度最低,风速小于2m/s的偏北风下易出现污染;(4)PM_(2.5)浓度与相对湿度共同影响广州能见度的变化,随着相对湿度的增加,PM_(2.5)浓度的敏感阈值不断减小,通常当PM_(2.5)高于37.3μg/m3时,控制PM_(2.5)对改善城市能见度成效相对缓慢,而当PM_(2.5)浓度低于此阈值时,降低PM_(2.5)将显著提高大气能见度。  相似文献   

13.
采用基于气象预报(WRF)的多尺度空气质量(CMAQ)模型,通过研究不同大气污染物排放情景下PM_(2.5)平均浓度变化,分析SO_2、NO_x、PM_(10)、PM_(2.5)、VOCs等大气污染物减排对武汉市PM_(2.5)的影响。结果表明,大气污染物减排对武汉市PM_(2.5)年均浓度影响十分显著,且随着污染控制力度加大,PM_(2.5)污染持续减轻;当SO_2、NO_x、PM_(10)、PM_(2.5)、VOCs排放量均削减40%时,PM_(2.5)年均浓度下降24.0%,依然超出《环境空气质量标准》(GB 3095—2012)二级标准值。基于空间布局和行业敏感性确定武汉市大气污染控制方案,方案实施后SO_2、NO_x、PM_(10)、PM_(2.5)、VOCs排放总量分别下降53%、26%、32%、36%和31%,PM_(2.5)年均浓度下降35%左右,控制效果更加明显。  相似文献   

14.
对2013—2015年重庆主城区空气重污染情况进行统计,并结合地面和高空探测手段,分析了一次典型重污染过程的污染特征。结果表明:重庆主城区秋冬季节的空气污染,以受不利气象条件影响的本地细颗粒物(PM_(2.5))累积污染为主,PM_(2.5)占PM_(10)的平均比例为72%左右;大气能见度与颗粒物浓度、相对湿度均呈现明显的负相关性。典型污染期间的近地层颗粒物污染带主要在0~400 m的高度范围,AOD值高达2.0~2.4,α指数在1.0左右。二次粒子、机动车尾气、扬尘是污染期间重庆主城区PM_(2.5)的主要来源。  相似文献   

15.
利用2013年3月1日至2014年2月28日杭州市区4种常见污染物(NO_2、CO、PM_(2.5)和PM_(10))的小时浓度监测数据对杭州市区全年空气污染特征进行分析,并针对2014年1月17至19日的一次灰霾过程进行了污染特征与成因分析。结果表明,杭州市区NO_2质量浓度年均值为51.55μg/m~3,CO为0.87mg/m~3,PM_(2.5)为67.02μg/m~3,PM_(10)为102.06μg/m~3,均表现为冬季浓度高夏季浓度低的特征。4种污染物基本都在每天的9:00—10:00和19:00—20:00出现两个峰值。杭州市区PM_(2.5)主要来自于二次污染物转化,灰霾过程中PM_(2.5)质量浓度最高值接近300μg/m~3。这次灰霾过程的主要潜在源区包括京津地区、山东中部和江苏南部等地区,杭州市区本身气象条件加剧了这次污染的严重程度。  相似文献   

16.
为研究严寒地区供暖季室内外PM_(2.5)浓度的垂直分布,在供暖季分别对长春某高层居住建筑1、8、15、24、33楼层的室内外PM_(2.5)浓度进行监测,研究不同楼层室内外PM_(2.5)的浓度与变化特征。采用随机组分重叠模型(RCS)方法研究各楼层PM_(2.5)渗透因子,采用逐步回归分析方法研究室内PM_(2.5)浓度的各影响因素。结果表明:在供暖季,长春市高层建筑的不同楼层均存在一定的PM_(2.5)污染,室内外PM_(2.5)浓度随楼层升高大体呈现减小的趋势,但差异不显著。室内外PM_(2.5)浓度存在显著的相关性(P 0.05),在没有室内污染源时,室外颗粒物渗透是室内污染的主要来源。室内PM_(2.5)浓度与房间面积等没有显著相关性。  相似文献   

17.
为了解中国北方农村地区冬季室内外PM_(2.5)污染特征,选择河北唐山某农村燃煤与非燃煤室内外PM_(2.5)进行实验研究。结果表明:(1)燃煤采样点室内外PM_(2.5)分别为47.9~370.0、14.8~145.0μg/m~3,非燃煤采样点室内外PM_(2.5)分别为13.6~217.0、10.9~131.0μg/m~3。(2)室内外PM_(2.5)浓度具有一定的相关性。(3)采样期间的20d内,根据《环境空气质量标准》(GB 3095—2012)二级标准(PM_(2.5)24h均值限值为75μg/m~3),燃煤采样点室外PM_(2.5)超标率为10%,而非燃煤采样点为5%;根据GB 3095—2012一级标准(PM_(2.5)24h均值限值为35μg/m~3),燃煤采样点室外PM_(2.5)超标率为35%,而非燃煤采样点为20%;根据《建筑通风效果测试与评价标准》(JGJ/T 309—2013)规定室内PM_(2.5)的日均值应小于75μg/m~3,燃煤采样点室内PM_(2.5)超标率为65%,而非燃煤采样点为35%。  相似文献   

18.
针对空调系统末端装置用风机盘管不具备过滤PM_(2.5)功能的问题,在风机盘管回风口加装具有低阻特性的驻极体空气过滤器进行了性能测试分析。以蜡烛燃烧产生的颗粒物作为室内PM_(2.5)的尘源,将3种不同过滤面积的驻极体空气过滤器分别安装在风机盘管回风口,测试了风机盘管在不同风量(额定风量、75%额定风量、50%额定风量)下运行时其对PM_(2.5)过滤性能及在30 min内室内PM_(2.5)浓度衰减率。结果表明:加装驻极体空气过滤器后风机盘管瞬时过滤效率可达到66%以上、在30 min内室内PM_(2.5)的浓度衰减率可以达到54.8%以上;在相同风量下风机盘管的瞬时过滤效率、处理风量随加装过滤器过滤面积增加而提高;以PM_(2.5)浓度衰减率作为指标,可以判断出回风口加装过滤面积为1.88 m2的过滤器净化效果最优,其在不同风量下30 min内PM_(2.5)浓度衰减率分别为87.4%、84.7%和77.3%,且在不同风量下工作时均能在30min内使室内PM_(2.5)浓度达到环境空气质量标准一级日平均浓度限值。  相似文献   

19.
为探究人为因素和气象因素对道路区域PM_(2.5)浓度的影响,选择南京仙林大学城某条典型道路开展大气PM_(2.5)监测实验。结果表明,道路清扫抬升PM_(2.5)浓度,白天的抬升作用较傍晚和夜间更加显著。各类交通流对道路区域PM_(2.5)浓度的影响程度排序为:柴油车汽油车燃气车道路行人。PM_(2.5)浓度阴天高于晴天和多云天,霾日(209.3、80.5μg/m~3)高于非霾日(47.0、62.0μg/m~3);在霾日变化特征各异,在非霾日均呈"三峰"分布特征。非霾日,道路区域PM_(2.5)浓度的高值区与相对湿度的高值区,温度、风速的低值区重合;PM_(2.5)浓度的低值区与相对湿度的低值区,温度、风速的高值区重合。温度与PM_(2.5)浓度呈负相关(r=-0.501,P0.05),是影响PM_(2.5)污染程度的关键气象因子。由此可见,道路清扫、交通流和各类气象因素对道路区域PM_(2.5)浓度影响显著。  相似文献   

20.
为研究杭州市大气PM_(2.5)的污染特征,评估本地污染源和外来污染源对PM_(2.5)的影响,于2013年10月10日至11月2日对杭州市主城区两个不同高度的采样点进行采样,并定量分析大气PM_(2.5)中的化学成分。结果表明,采样期间20、84m高度的大气PM_(2.5)日均质量浓度分别为(80.5±28.9)、(80.3±29.3)μg/m3,不同高度的PM_(2.5)浓度及其化学成分无明显差异;PM_(2.5)主要成分质量分数按如下排序:SO_4~(2-)有机碳(OC)NO_3~-NH_4~+元素碳(EC);大气PM_(2.5)中二次粒子SO_4~(2-)、NO_3~-、NH_4~+平均质量浓度总和约为39.0μg/m3,二次转化是杭州市大气PM_(2.5)的主要来源,SO_4~(2-)、NO_3~-、NH_4~+贡献率为48%左右;20、84 m高度的大气PM_(2.5)中OC分别为(15.6±5.1)、(14.8±4.7)μg/m3,EC分别为(4.6±1.8)、(4.6±1.6)μg/m3,OC/EC(质量比)约为3.3。采样期间,杭州市大气PM_(2.5)在近地面垂直方向上分布较为均匀,表明杭州市大气PM_(2.5)受外来污染源的影响较小。而在本地污染源中,杭州市大气PM_(2.5)主要受到生物质燃烧、机动车尾气、燃煤和餐饮油烟等来源的影响,地面扬尘的作用不明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号