首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 15 毫秒
1.
利用便携式车载排放测试系统,对某款采用增压中冷和高压共轨技术的国Ⅳ轻型柴油车进行实际道路排放测试,研究其分别燃用石油基柴油、费托柴油和混合柴油(费托柴油与石油基柴油按一定比例混合而成)时,不同车速下的CO、THC、NOx和CO2排放特征和油耗变化情况。实验结果表明:对于3种柴油,所测4种气态物的排放均随着车速的增加而降低,当速度达到一定程度后趋于稳定;与石油基柴油相比,费托柴油和混合柴油的CO、NOx和CO2排放分别降低23%和5%,30%和24%,20%和20%,但THC排放均略有增加;通过碳平衡计算,费托柴油和混合柴油的体积油耗相对石油基柴油分别降低12%和17%。总的来说,燃用费托柴油和混合柴油时的气态污染物排放与石油基柴油具有相似的速度变化趋势,但费托柴油和混合柴油的整体尾气排放和油耗要低于石油基柴油。使用费托柴油或混合柴油是降低轻型柴油车实际道路排放的一个有效途径。  相似文献   

2.
负载对实际道路重型柴油车排放的影响研究   总被引:1,自引:0,他引:1  
利用车载测试系统对重型柴油货车空载、50%负载和100%负载不同负载情况下在实际道路的排放进行测试,基于测试数据分析负载对重型柴油货车排放CO、HC、NOx和微小颗粒物(PM)等4种污染物的影响.不同速度区间和行驶模式下负载对排放的影响分析表明,在有负载时,大多数工况下4种污染物排放呈现增加趋势,但各速度区间和行驶模式下的增幅不尽相同,部分工况出现下降.空载时测试柴油车基于新欧洲行驶循环测试(NEDC)工况的标准化CO、HC、NOx和PM排放因子分别为3.38、0.39、6.27、0.39 g/km.对于柴油车重点污染物NOx和PM而言,与空载相比,50%负载时分别增加43%和59%,100%负载时分别增加62%和44%.  相似文献   

3.
为分析重型柴油车实际道路测试情况下污染物的排放评估方法,选取了4辆国六重型柴油车进行实际道路排放试验。试验结果表明,现行《重型柴油车污染物排放限值及测量方法(中国第六阶段)》(GB 17691—2018)采用的功基窗口法在计算过程中剔除了大量发动机处于低功率段时氮氧化物(NOx)高比排放区域数据,大幅低估了重型柴油车在实际道路工况下的NOx排放量,不能充分反映车辆实际道路排放水平,应进一步修改完善,建议后续标准修订时,去除法规中功率阈值最小10%的限制,采用全窗口的90%分位值来表征车辆的排放水平,或通过行程时间占比加权值法计算污染物比排放。  相似文献   

4.
液化石油气轿车实际道路污染物排放特征   总被引:2,自引:1,他引:2  
利用PEMS对国2技术LPG出租轿车和汽油轿车的实际道路排放进行测试,基于测试数据对LPG轿车排放特征进行解析,并与汽油轿车的排放因子进行对比分析.结果显示:速度和行驶模式对LPG轿车污染物排放影响明显;LPG轿车CO 2、CO、HC和NOx污染物的实测排放因子分别为(169.5±22.2)、(2.18±2.38)、(...  相似文献   

5.
基于车载尾气检测设备(portable emission measurement system, PEMS), 研究了国Ⅵ重型车气态污染物的排放特征; 基于单位燃油消耗排放因子、单位行驶里程排放因子、单位时间排放因子, 分析了NOx、HC、CO污染物随路况的变化规律。实验结果表明, NOx、HC、CO气态污染物较国Ⅴ重型柴油车下降幅度较大, 3种气态污染物分别下降88%、98%、62.7%。采用功基窗口法对数据进行整理分析, NOx测量结果为460 mg·(kWh)-1, CO测量结果为192 mg·(kWh)-1, HC测量结果为37.5 mg·(kWh)-1, 该重型柴油车可以满足国Ⅵ车载法规的要求。研究结果可为国Ⅵ重型车排放标准制定及其在环境污染控制领域的应用提供参考。  相似文献   

6.
利用OBS2200车载测试系统,对天津市的道路行驶车辆进行测试,在3种不同交通流特征(交通高峰期、低峰期和平峰期)下获得了道路车载排放污染物(HC、CO、NOx和CO2)的逐秒数据,结果显示,高峰期HC和CO平均排放率(0.027±0.018 g/s和0.330±0.196 g/s)明显高于低峰期和平峰期,大约分别是低峰期的5.4倍和4.3倍,平峰期的3.9倍和9.2倍。低峰期NOx和CO2平均排放率(0.006±0.006 g/s和1.904±0.960 g/s)稍高于高峰期和平峰期。加速工况下4种排放物的平均排放率:0.022±0.019 g/s、0.243±0.234 g/s、0.007±0.007 g/s和1.766±0.946 g/s,大约分别是减速工况下4种排放物平均排放率的1.1倍、1.4倍、2.3倍和1.9倍。随着加速度增大4种排放物的排放率逐渐增大。  相似文献   

7.
以石家庄城市道路扬尘为研究对象,于2014~2015年秋冬季采用移动式采样法收集不同类型道路积尘。分析道路积尘负荷、道路积尘粒径分布特征、车流量和平均车重等数据,计算得出石家庄道路扬尘PM2.5排放因子和排放量。通过地理信息系统软件(GIS)提取研究区域道路信息,制作道路矢量化图,并结合道路扬尘PM2.5排放因子和排放量,建立排放清单。结果表明,秋季各道路扬尘PM2.5排放因子为0.003~0.103 g·VKT-1,冬季各道路扬尘PM2.5排放因子为0.004~0.016 g·VKT-1;秋、冬两季不同类型道路扬尘PM2.5排放因子分布特征为快速路 > 主干道 > 次干道 > 支路;秋季道路扬尘PM2.5排放量为6.47~53.07 t,冬季为3.47~12.02 t,秋季排放量大于冬季排放量,秋、冬两季道路扬尘PM2.5排放量分布特征为快速路 > 支路 > 主干道 > 次干道。  相似文献   

8.
9.
为了解焦化厂在装煤过程中产生的PM2.5及其周边区域空气环境PM2.5中多环芳烃(PAHs)的含量,采用微纤维石英滤膜对PM2.5采样,并通过气相色谱-质谱仪分析PM2.5上负载的16种毒性较大PAHs。结果表明:焦炉装煤除尘烟气PM2.5中PAHs的成分主要受到炼焦配煤的影响;布袋除尘器对装煤除尘烟气中高环PAHs的处理效果显著;焦化厂周边空气环境中PM2.5中的PAHs浓度呈明显空间递减趋势。采用特征比值法分析得到该区域空气环境中PAHs主要来源于煤炭燃烧,用毒性当量法分析得到焦化厂区域PM2.5中PAHs的毒性为其他区域的9~90倍,高环PAHs的毒性贡献较大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号