首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
陈文婷  李轩  付国楷 《环境工程学报》2020,14(10):2710-2718
为处理高盐榨菜废水(mustard tuber wastewater treatment,MTWW),实现系统同步产电脱盐的目的,构建了以生物电化学为基础的微生物脱盐燃料电池(microbial desalination cell,MDC),探讨了铁氰化钾和水阴极MDC产电及脱盐效果,并对系统微生物群落进行了分析。结果表明:在相同脱盐时间内,铁氰化钾组盐度去除率为90.30%,略高于水阴极组;在整个脱盐周期内,铁氰化钾组产电性能优于水阴极组;随着脱盐时间的延长,铁氰化钾组产电性能略有下降,而水阴极组产电性能显著增强;铁氰化钾组阳极优势菌属为Methanosaeta(23.55%)、Geobacter(14.09%)和vadinHA17(8.64%),水阴极组阳极优势菌属为vadinHA17(18.17%)、Methanosaeta(13.00%)和Methanosaeta(9.79%),其中Geobacter为产电菌,vadinHA17为水解发酵菌,MethanosaetaMethanosaeta为常见产甲烷菌。铁氰化钾组阳极和水阴极组阳极中产甲烷菌占比很高,然而,产甲烷菌对系统产电脱盐有不利作用,因此,有必要寻找合适的抑制产甲烷菌产生的方法。运行后期,水阴极组阴极中出现了产电菌,极大地降低了阴极过电势,提高了系统的产电性能。上述研究结果可为MTWW的资源化处理提供参考。  相似文献   

2.
为研究铁氰化钾对双室微生物燃料电池(MFC)阴极性能的改善效果,以碳毡和碳棒作为复合电极材料,乙酸钠为阳极电子供体,分别以氧气、铁氰化钾和氧气交替作为阴极电子受体.通过测定使用铁氰化钾作阴极电极液之前和之后的曝气阴极MFC的功率密度及极化曲线,比较曝气阴极MFC的内阻、开路电压(OCV)和最大输出功率的变化情况.实验结果表明,当以铁氰化钾作为MFC阴极电子受体时,MFC的内阻、开路电压和最大输出功率分别为24.2 Ω、744.2 mV和33.7 W/m3.曝气阴极MFC在采用铁氰化钾作电极液对阴极性能进行改善之前和改善之后的内阻由77.2 Ω降低到40.1 Ω,OCV和最大输出功率分别由517.9 mV和2.1 W/m3提高到558.2 mV和4.4 W/m3.研究表明,铁氰化钾本身不仅具有优良的接受电子的能力,而且对电极材料(碳毡和碳棒)的电化学性能具有明显的改善作用,使得使用铁氰化钾之后的曝气阴极MFC的产电性能有了明显且持久性的提高.  相似文献   

3.
基于双室微生物燃料电池(microbial fuel cells,MFCs),以高盐榨菜废水为燃料,考察了电池的运行状况,同时探讨了盐度变化对电池产电性能影响,并通过投加甜菜碱研究其对MFCs系统抵抗盐度负荷冲击能力的影响。结果表明:MFCs稳定运行时(阳极室容积80 mL),最大功率密度、开路电压和电池内阻分别为3.55 W·m-3、0.698 V和427 Ω;底物中添加2 mmol·L-1甜菜碱后电池产电性能得到明显提升;当废水含盐量(增加到5 g·L-1 NaCl)为31.2 g·L-1时电池产电性能达到最佳,但是继续增高盐度后电池产电性能会急剧下降;投加甜菜碱有助于提高系统抵抗盐度负荷变化造成的冲击,维持电池的产电输出。  相似文献   

4.
采用淡水沉积物为接种来源,培养出光合产电微生物群落。将其与藻阴极联用组建了完整的光合作用微生物燃料电池时,功率密度达到(157.5±3.1)mW/m2。采用循环伏安法及电化学阻抗谱对该群落的电化学性能进行了测试。PCR-DGGE及紫外可见吸收光谱分析显示,该群落含有 Ectothiorhodospiraceae科及Chloroflexi门不产氧光合细菌、产电菌Arcobacter butzleri、发酵细菌及其他细菌。对该群落进行长期黑暗培养或长期光照培养时,其产电性能均得到了提高,但功率密度测试显示,光照培养微生物燃料电池最大功率密度为(180.1±8.7)mW/m2,高于黑暗培养的微生物燃料电池(160.7±11.4)mW/m2。电化学测试也显示,光照培养的阳极产电性能优于黑暗培养的阳极。  相似文献   

5.
微生物燃料电池(MFCs)是一种在处理废水的同时产生电能的新型装置,阳极作为产电微生物富集、电子产生和传递的区域对提高MFCs的性能具有至关重要的作用。以碳布负载的四氧化三钴多孔纳米片阵列(Co3O4/CC)作为阳极,探究了可调控的纳米片孔缺陷对MFCs产电性能的影响。结果表明:Co3O4/CC阳极的产电性能显著优于碳布,且正比于Co3O4纳米片的孔隙率;液固界面处的电荷传递电阻(Rct)由729.20 Ω降至43.48 Ω,所获得的最大功率密度由1275 mW·m−2增加至1547 mW·m−2。本研究开发了一种孔结构可控的金属氧化物负载碳布策略,所制备的高性能阳极材料可为MFCs的性能提升提供参考。  相似文献   

6.
布洛芬作为一种高性价比消炎药被大量使用,环境中布洛芬浓度升高易引起抗生素抗性基因污染等环境问题。本研究构建了双室微生物燃料电池(MFCs)以去除水中布洛芬,分析了阳极生物膜微生物群落结构并注释了基因功能。结果表明,MFCs阳极微生物以10 mg·L-1布洛芬作为唯一碳源,外接1 000 Ω电阻,输出电压约为0.60 V,运行至108 h时布洛芬去除率达85.33%,是对照厌氧生物处理的3.18倍。微生物群落结构分析结果表明,MFCs阳极生物膜微生物群落结构与传统厌氧生物膜差异显著,Proteobacteria在阳极生物膜相对丰度高达83.57%,而对照组中仅为60.52%,PusillimonasBurkholderiaAgrobacteriumMartelellaRuegeria在属水平相对丰度也高于对照组。代谢通路分析结果表明,环境信息处理通路在MFCs阳极微生物显著增强,其碳代谢及氮代谢基因数量分别高于对照组9.02%和28.58%。  相似文献   

7.
构建了双室混合生物阴极微生物燃料电池(microbial fuel cell,MFC)处理高盐榨菜废水,探讨了不同电流强度对混合膜 MFC 脱氮的影响,并分析了产电特性及微生物群落特征。结果表明,高电流通量可缩短双室混合膜MFC的完全脱氮周期,且主要缩短的是稳定期周期。相对于其他3个实验组,电流强度最大的S3实验组硝酸盐平均去除速率((5.72±0.10) mg·(L·d)−1)与硝酸盐最高去除速率((8.45±0.15) mg·(L·d)−1)均最大,且实现总氮100%去除的时间最短(19 d),稳定期硝酸盐去除速率k (6.122 5 mg·(L·d)−1)最大,这说明增大电流强度可促进混合膜MFC 电营养反硝化。电营养反硝化菌可直接利用电子进行反硝化反应,而较大的电子通量给阴极电活性自养脱氮微生物提供了丰富的生命燃料。在产电方面,曝气阶段开路电压(S1、S2、S3、S4分别为750、729、721、699 mV)随外加电阻的增大而增大,最大功率密度相差却并不显著(1.09、0.94、1.04、1.02 W·m−3);停止曝气阶段,阴极室电子受体的减少,导致MFC产电性能普遍下降,外电阻最大的S1实验组开路电压(746 mV)与最大功率密度(0.77 W·m−3)为最高。高通量测序结果表明,承担电营养反硝化功能的菌群可能为norank_f_Hydrogenophaga,Azoarcus。以上研究结果可为后续双室混合膜 MFC处理高盐废水提供技术参考。  相似文献   

8.
以厌氧污泥为接种菌源,醋酸钠为阳极基质,分别构建了铁氰化钾和过硫酸铵为电子受体的双室微生物燃料电池(MFC),并研究了MFC在不同电子受体下的产电性能。结果表明,以铁氰化钾和过硫酸铵为电子受体的MFC最大稳定输出电压均随着电子受体浓度的升高而增大。当铁氰化钾质量浓度大于2.0g/L时,MFC最大稳定输出电压增幅不大。两种MFC的内阻均随电子受体浓度的增大而降低。阴、阳极溶液体积相等,外阻为5 000Ω时,以10.0g/L过硫酸铵为电子受体,MFC最大开路电压和最大输出功率密度分别为1 029.0mV和385mW/m3;以10.0g/L铁氰化钾作为电子受体,MFC最大开路电压和最大输出功率密度分别为711.8mV和73mW/m3,均小于以过硫酸铵为电子受体的最大开路电压和最大输出功率密度。因此,过硫酸铵是一种理想的电子受体,能够提高MFC产电性能。  相似文献   

9.
构建一种新型三室微生物脱盐电池(MDC),研究其脱盐产电并同步处理污染废水的效果。结果表明,阳极室为葡萄糖溶液,中间室盐溶液浓度5 g/L,阴极室为铁氰化钾溶液,闭合体系瞬时获得最高电压650 mV,同时脱盐效果良好,该MDC成功启动。其后,阴极室以重金属铬(200 mg/L)废水作为电子受体,中间室初始盐浓度为20 g/L、35 g/L,Cr(Ⅵ)平均还原率分别为1.06 mg/(L.h)和0.64 mg/(L.h),两者Cr(Ⅵ)的去除率均能达到80%以上,脱盐率分别为81.64%(20 g/L)和88.95%(35 g/L)。中间室盐浓度20 g/L时,获得最大输出电压466.6 mV,最大体积功率密度98.6 mW/m3,最佳内阻655.8Ω,库仑效率1.16%。表明该MDC系统具有良好的脱盐效果和处理废水效果。  相似文献   

10.
为了降低构建微生物燃料电池(MFCs)的成本,比较了以碳毡和碳布作为阴极材料,在阴极利用功能微生物作为催化剂时电池的产电性能。结果表明,两电池启动时间基本相同,20 d左右达到稳定,但稳定期碳布作阴极的电池电压比碳毡作阴极的电池电压高出了60 mV左右。碳毡和碳布作阴极时,电池在10 d和20 d的最大功率密度分别由10.24和11.14 mW/m2提升到了18.18和30.15 mW/m2,相应内阻则分别由1 000和600 Ω降到了250和200Ω。循环伏安法(CV)显示两材料单独做电极时氧化还原情况相似,扫描电镜(SEM)观察到两者不同表面特性导致碳毡对污泥附着强于碳布,进而使氧气传递受到限制,产电降低。  相似文献   

11.
构建了3室榨菜生产废水微生物脱盐燃料电池系统(microbial desalination cell,MDC),探讨了其阳极COD对榨菜废水MDC产电、脱盐的影响;通过微生物群落分析,探查了脱盐室${{\rm{NH}}_4^ + }$-N的去除途径。结果表明:在产电性能方面,MDC阳极COD为900 mg·L−1时较400 mg·L−1与1 400 mg·L−1时更优,在1 000 Ω的外电阻负载下,其输出电压、最大功率密度、库仑效率分别为550 mV、2.91 W·m−3、(15.7±0.5)%;在脱盐方面,阳极COD为400 mg·L−1时,较其他2种情况更优,MDC的脱盐时间、脱盐速率、电子利用效率分别为910.5 h、5.15 mg·h−1、111%。阳极COD不同的MDC脱盐室,其${{\rm{NH}}_4^ + }$-N的去除途径基本相同。脱盐室部分${{\rm{NH}}_4^ + }$-N转化为${{\rm{NO}}_3^ - }$-N后,通过自身的反硝化或以NO3形式迁移至阳极得以去除,剩余的大部分${{\rm{NH}}_4^ +} $-N以${{\rm{NH}}_4^ + }$形式迁移至阴极,在碱性环境下转化为NH3并排出。高通量测序分析结果表明,水解发酵菌属(总丰度为33.21%)为MDC阳极的核心微生物群落。阳极生物膜中的电化学活性菌(总丰度为11.78%)可实现电池的产电功能,反硝化菌属(总丰度为14.61%)的存在证明,脱盐室盐室${{\rm{NO}}_3^ - }$-N迁移至阳极室后进行了反硝化并得以去除。在脱盐室水体中检测到了氨氧化菌属(总丰度为6.93%)及反硝化菌属(总丰度为15.82%),这也是脱盐室中${{\rm{NO}}_3^ - }$-N快速产生和随后浓度陡降的原因。  相似文献   

12.
为提高双阴极MFC的脱氮产电性能,构建了双阴极微生物燃料电池系统,考察了连续进水状态下阳极与缺氧阴极间外阻(RA-A)以及阳极与好氧阴极间外阻(RA-O)的变化对系统脱氮产电性能的影响。结果表明:只增大一侧电阻会降低厌氧阳极的库仑效率和功率密度,但能提高系统的脱氮效果;当RA-O由200 Ω增大到1 000 Ω时,TN去除率由43.81%提高到60.71%,当RA-A由200 Ω增大到1 000 Ω时,TN去除率由38.88%提高到61.52%;当总外阻固定在1 000 Ω时,两侧电阻变化不影响阳极的功率密度和库仑效率,其分别保持在305.53 mW·m−3和0.35%左右;电阻组合(RA-A /RA-O)由500 Ω/500 Ω变化为100 Ω/900 Ω,TN去除率由62.32%提高到64.41%;系统的硝化效果随RA-O的增大而增强,反硝化效果随RA-A的减小而增强,总氮去除效果随总外阻的增大而提升。低RA-A与高RA-O的外阻组合能有效提高双阴极三室MFC的脱氮能力。增大总外阻,系统产电性能降低,阳极表面微生物膜氧化性不断减弱,总外阻不变,阳极表面氧化性变化不大。研究探明了外电阻变化对三室双阴极MFC脱氮产电性能的影响,为进一步提高MFC脱氮产电性能提供参考。  相似文献   

13.
研究了玉米秸秆生物炭作为微生物燃料电池电极的性能。阳极以S2-为单一电子供体,阴极以NO3-为电子受体,以碳毡为对照电极,考察玉米秸秆生物炭电极用于生物燃料电池同步脱硫反硝化的电化学性能、产电性能以及污染物去除能力,分析了不同硫氮质量浓度比对生物炭电极微生物燃料电池脱氮除硫效率以及输出电能的影响。结果表明,玉米秸秆生物炭电极微生物燃料电池实现了更高的交换电流密度(22.42×10-3 A·cm-2)和更低的电荷转移电阻(4.24Ω)。与碳毡电极相比,玉米秸秆生物炭电极微生物燃料电池最大输出电压和最大功率密度分别提升了18.91%和16.67%。当硫氮比为5:4时,反应器脱硫反硝化和产电能力最佳。阳极室S2-出水质量浓度由120 mg·L-1降至1.08 mg·L-1,去除率为99.1%,其中76.52%转化为SO42--S,阴极室NO3--N去除率...  相似文献   

14.
双室微生物燃料电池处理硝酸盐废水   总被引:3,自引:1,他引:2  
基于双室微生物燃料电池(microbial fuel cell,MFC),针对阴极分别接种活性污泥(A-MFC)和反硝化细菌(D-MFC),研究其产电情况和硝酸盐废水去除效果。结果表明,在产电的同时都可有效去除废水中的硝酸盐污染物。在外接电阻100Ω的情况下,2种MFC均具有良好的产电性能,A-MFC和D-MFC达到的最大输出电压分别为119.6 mV和117.2mV,最大功率密度分别为23.40 mW/m2和26.63 mW/m2;同时两者在阴极室的平均反硝化速率分别为1.86 mg/(L.d)和2.19 mg/(L.d),阳极室的平均COD去除率分别为81.9%和82.4%。另外,通过扫描电镜观察可知,A-MFC和D-MFC阴极碳布表面形貌存在差异,并且阳极与阴极碳布表面形貌差异显著。  相似文献   

15.
磷酸活化石墨的氧还原特性以及用于微生物燃料电池阴极   总被引:1,自引:1,他引:0  
研究了磷酸活化对石墨电极上氧还原反应的影响,并考察了磷酸活化石墨材料应用于微生物燃料电池阴极的可行性。首先以循环伏安和电化学阻抗谱等电化学方法考察了经磷酸活化的石墨材料的氧还原能力,发现经质量分数为85%磷酸活化12 h后其氧还原能力最强;然后将活化石墨材料应用于微生物燃料电池的阴极,进行极化曲线和功率密度曲线的测定。结果表明,磷酸活化阴极微生物燃料电池的最大功率密度可达7.92 W/m3,为未活化石墨阴极微生物燃料电池的3.4倍;同时进行了电化学比表面积的测定及FTIR的分析测定,结果表明,磷酸活化石墨颗粒的比表面积(7.716m2/g)较未活化颗粒(10.940 m2/g)略有减小,但其表面官能团的数量和种类发生了很大变化。表面官能团的变化可能是导致石墨材料氧还原能力增强及MFCs产电性能提高的重要原因。  相似文献   

16.
为了提高厌氧流化床微生物燃料电池(AFB-MFC)的性能,并为双室MFC寻找价廉、易得、无污染的阴极液,在曝气量16~24 L/h、温度(35±2)℃、回流量10.2 L/h、阴极底边距阴极室内底部17.3 cm、外电阻250 Ω、水力停留时间(HRT)14.0~14.9 h以及进水pH 7.81~8.37下,研究了阴极液及底物浓度对系统产电及废水处理性能的影响。结果表明,使用缓冲溶液、阳极室出水和自来水作阴极液时,自来水的产电性能最佳,阴极液种类不影响系统有机基质的去除。以自来水为阴极液时,阴极液pH及电导率随运行时间增加而增加,COD去除率为80.11%~89.29%,输出电压及功率密度开始随运行时间增加而增加,之后稳定在440~452 mV和48.40~51.08 mW/m2之间。增加底物浓度对COD去除率影响不大,而输出电压及功率密度随底物浓度增加而下降;底物COD浓度由3 307.09 mg/L增至9 520 mg/L时,COD去除率在85.77%~94.44%之间,输出电压及功率密度则分别由449 mV和50.40 mW/m2下降至406 mV和41.21 mW/m2。自来水作阴极液可避免二次污染及阴极液对阳极室微生物的影响,并得到高的产电能力。  相似文献   

17.
阴极催化性能及材料对微生物燃料电池(microbial fuel cells,MFCs)的产电特性及制造成本有很大影响。本研究选用金属铂(Pt)、活性炭作为催化剂、聚四氟乙烯(PTFE)和道康宁1-2577作为阴极的扩散层、碳布和不锈钢网作为阴极的基体材料制备得4种阴极,分别考察了相应MFC的产电性能和阴极特性。结果表明,采用传统Pt催化剂+PTFE扩散层+碳布制备成的阴极(Pt-PTC),MFC的最大输出电压为560 mV,最大功率密度为808 mW/m2,而采用活性炭+道康宁1-2577+不锈钢网制备成的阴极(AC-DCS),MFC的最大输出电压为510 mV,最大功率密度为726 mW/m2,两者的MFC产电性能极为接近。SEM结果表明,活性炭催化层表面和道康宁1-2577扩散层分别比Pt催化层及PTFE扩散层的更均匀光滑。阴极线性伏安测定结果表明,AC-DCS与Pt-PTC的电化学氧化性能较为接近。AC-DCS阴极成本仅为Pt-PTC的1/300左右,是一种低成本扩大化生产MFC阴极的新方法。  相似文献   

18.
采用微生物电解池(microbial electrolysis cell,MEC)进行沼气脱硫研究,探究了阳极的S2−去除率、硫价态的变化及微生物群落演替规律。结果表明,该方法中S2−去除率可达到90%以上,SO42−为阳极硫氧化反应的主要产物。微生物群落分析结果表明,Pseudomonas为脱硫优势微生物,在阳极生物膜与溶液中的丰度分别为7.6%和15.8%;电活性细菌Geobacter在阳极生物膜与溶液中的丰度分别为11.3%和5.26%,参与了Pseudomonas的种间电子传递,从而提高硫氧化效率。本研究结果可为MEC沼气脱硫工艺提供参考。  相似文献   

19.
李莉  代勤  张赛  刘灏 《环境工程学报》2021,15(1):115-125
构建单室空气阴极微生物燃料电池反应器(MFC)并用于处理含硫偶氮染料有机废水,研究初始pH对单室MFC的产电性能和对偶氮染料及硫化物的去除效果以及阳极生物膜电化学行为的影响。利用紫外可见光谱全波长扫描(UV-vis), 高效液相(HPLC)和液相色谱-质谱联用(LC-MS)分析偶氮染料还原反应过程的中间产物。结果表明,以乙酸盐为底物,单室MFC的阳极液在中性条件下有利于系统性能的提高。pH由5.0增加到9.0过程中,单室MFC的产电性能先增加后减小,中性条件下产电性能和目标物降解率最佳,其次为偏酸和偏碱条件,过酸或过碱最差。当pH=7.0时,电池的最大功率密度为24.5 mW·m−2,内阻最小为154.1 Ω;微生物的活性最高,硫化物和偶氮染料的降解率最大,硫化物去除率为98.40%,染料的脱色率达到84.60%,COD的降解率为49.56%。另外,通过CV扫描可知,pH对阳极产电菌的氧化还原能力有显著影响,中性条件下阳极产电菌的氧化能力最强。联苯胺和3,4-二氨基萘-1-磺酸被证实为刚果红降解反应典型的中间产物,而硫化物氧化的主要产物是硫单质,硫代硫酸盐和硫酸盐。以上研究结果可为处理实际的含硫偶氮染料废水提供一定的参考。  相似文献   

20.
对混合菌接种的双室微生物燃料电池加载磁场强度为175 mT的稳恒磁场,利用电化学交流阻抗等电化学分析方法,考察了在磁场作用下微生物燃料电池(MFC)产电性能的变化,分析了磁场对MFC各部分内阻的影响。加载磁场使已启动完成的MFC的产电明显增强,开路电压提高了10%。加载磁场后最大功率密度为2.08 W/m2,大于加载前的1.58 W/m2,表观内阻由170Ω降至80Ω。电化学阻抗谱分析确定了阳极、阴极和全电池的等效电路模型,拟合结果发现阳极极化内阻约为5Ω。加载磁场使MFC的阴极极化内阻由74.98Ω降至56.73Ω。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号