首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HRT对UASB厌氧反硝化脱氮的影响   总被引:1,自引:0,他引:1  
在反硝化脱氮的影响因素方面,研究多集中在碳源种类和碳氮比(C/N)2个方面,而对水力停留时间(HRT)的影响很少有报道。采用UASB作为厌氧反硝化反应器,进水NO_3~--N为50 mg·L~(-1),C/N比固定为1.5,分别以葡萄糖和乙酸钠作碳源,研究HRT对反硝化效果的影响。结果表明:当外加碳源为葡萄糖时,最佳HRT为6 h,此时NO_3~--N和TN的去除效果最好,去除率分别为79.5%和63.8%,出水NO_2~--N和NH_4~+-N浓度分别为4.69 mg·L~(-1)和2.22 mg·L~(-1);当外加碳源为乙酸钠时,最佳HRT为4 h,对应的NO_3~--N和TN去除率分别为99.0%和91.4%,出水NO_2~--N和NH_4~+-N浓度分别为3.08 mg·L~(-1)和0.47 mg·L~(-1)。HRT对反硝化效果有显著影响,且跟碳源种类有关。HRT会影响反硝化菌、反硝化异化还原成铵(DNRA)细菌和其他异养菌之间的平衡。  相似文献   

2.
为了降低生物脱氮的碳源成本,首次对玉米叶作为好氧反硝化替代碳源进行研究。先将玉米叶水解预处理,使有机碳源更容易被螯台球菌(Chelatococcus.daeguensis)TAD1获得。在温度为50℃、转速为160 r·min~(-1)的条件下,分别考察玉米叶水解液、柠檬酸钠与玉米叶水解液混合物作为碳源时TAD1的好氧反硝化性能,以及初始pH、NO_3~--N、NO_2~--N浓度对好氧反硝化的影响。结果表明:初始NO_3~--N为100 mg·L~(-1),柠檬酸钠与玉米叶水解液比例为1∶4时好氧反硝化效果最好,其最佳pH为8.0,此时脱氮率为96.79%。初始NO_3~--N为250 mg·L~(-1)时,以玉米叶水解液为唯一碳源时,反硝化速率高达24.30 mg·(L·h)~(-1),脱氮率高达97.20%。总的来说,NO_3~--N为50~100 mg·L~(-1)时,混合液更适宜作为TAD1的碳源;当NO_3~--N为150~300 mg·L~(-1)时,玉米叶水解液更有优势,可以完全取代传统碳源进行反硝化。相似地,NO_2~--N为30~50 mg·L~(-1)时,混合液更适宜作为TAD1的碳源;当NO_2~--N为50~150 mg·L~(-1)时,玉米叶水解液更具优势。  相似文献   

3.
针对目前生物工艺难以解决垃圾渗滤液深度脱氮的问题,探究了短程硝化反硝化-厌氧氨氧化-硫自养反硝化(两级自养)工艺处理高氨氮、低C/N比垃圾渗滤液的脱氮效果。结果表明,当进水垃圾渗滤液中氨氮平均浓度为2 560 mg·L~(-1),COD值为4 000~5 000 mg·L~(-1)时,经过短程硝化反硝化-厌氧氨氧化处理后,总氮去除负荷可达1.19 kg·(m~3·d)~(-1)、总氮去除率可达93.1%(出水TN=176.3 mg·L~(-1))、COD去除率可达52.2%。但是,厌氧氨氧化反应器出水中NO_x~--N浓度为154.5 mg·L~(-1),仍未达到我国生活垃圾填埋场垃圾渗滤液处理排放标准(TN≤40 mg·L~(-1))。在厌氧氨氧化反应器之后串联硫自养反硝化,整体工艺最终出水NH_4~+-N、NO_2~--N、NO_3~--N平均浓度分别为1.9、0.6、9.7 mg·L~(-1),TN≤15 mg·L~(-1),进水总氮去除率为99.5%。在短程硝化反硝化-厌氧氨氧化-硫自养反硝化两级自养深度脱氮反应系统中实现了垃圾渗滤液深度脱氮。  相似文献   

4.
以A~2/O-移动床生物膜反应器(MBBR)长期稳定运行的反硝化除磷污泥为研究对象,通过在厌氧段投加乙酸钠、缺氧段投加NO_3~--N,考察反硝化聚磷菌(DPAOs)在不同电子受体浓度(NO_3~--N:10、20、30、40、50 mg·L~(-1))下的脱氮除磷特性以及内碳源转化利用规律。实验结果表明:缺氧段电子受体不足导致吸磷受限,微生物由于处于饥饿状态出现糖原(GLY)降解,增加二次释磷的风险;而电子受体过量会抑制DPAOs的生物活性,降低内碳源的转化利用效率和同步脱氮除磷效果。当NO_3~--N浓度为30~40 mg·L~(-1)时,NO_3~--N和PO_4~(3-)-P去除率分别为92.28%~96.37%和99.39%~100%,聚-β-羟基链烷酸脂(poly-β-hydroxyalkanoate,PHAs)利用率为84.6%~86.2%,达到较好的同步脱氮除磷效果且实现了内碳源的高效利用。动力学参数对比结果表明,不同电子受体浓度下比吸磷速率(PUR)和比反硝化速率(DNR)在4.32~8.18 mg·(g·h)~(-1)、1.81~6.08 mg·(g·h)~(-1)(以VSS计)范围内波动,且NO_3~--N/PO_4~(3-)-P比值可间接反映DPAOs生物活性。  相似文献   

5.
以某城市污水厂二级出水为原水,以甲醇、乙酸钠为碳源,研究了不同碳源对反硝化生物滤池运行的影响,并借助16S rDNA测序技术对滤池生物膜的微生物群落组成和结构进行了解析。结果表明,采用逐渐增加滤速的方式进行挂膜,乙酸钠滤池在启动7 d后出水水质稳定,NO_3~--N去除率在96%以上,NO_2~--N积累消失;甲醇滤池则需要9 d。稳定运行期,甲醇和乙酸钠滤池达到最大反硝化效率所需碳氮比均为4.5~5.5,出水TN1.0 mg·L~(-1)。乙酸钠滤池沿过滤方向硝酸盐氮降解较快。与甲醇相比,乙酸钠微生物产量高、运行周期短、反冲洗时间长,且药剂投加量高。从滤池脱氮效率、运行稳定性和成本等方面综合考虑,甲醇可作为最佳碳源。微生物在属水平进行聚类分析结果表明,以甲醇、乙酸钠为碳源的反硝化生物滤池中的微生物种群存在差异。甲醇滤池中与反硝化有关的属占36.68%,其中优势菌属Methylophilus,属于嗜甲基型菌属。乙酸钠滤池中与反硝化有关的菌属占58.38%。其优势菌属为Arobacter,可利用有机酸还原硝酸盐。  相似文献   

6.
针对污水处理厂冬季反硝化脱氮效率不佳的问题,以常州市某污水处理厂A~2/O工艺为研究对象,模拟探讨了不同外加碳源、碳源投加量、溶解氧(DO)和硝态氮浓度对生物处理系统反硝化脱氮能力的影响。结果表明,外加有机碳源对系统的反硝化效能有明显的强化效果。3种外加有机碳源(乙酸、乙醇和乙酸钠)中,乙酸为最佳碳源。当乙酸投加量为40mg/L时,系统反硝化脱氮效率最高,比反硝化速率可达1.964mg/(g·h),反硝化碳耗最少,为7.14 mg/mg。DO与比反硝化速率成反比,DO≤0.20mg/L时,反硝化能力最强。硝态氮初始质量浓度为20mg/L左右时,反硝化能力最强。在实际工程应用中,可以通过提高硝化效果或直接调整回流比实现反硝化脱氮最优条件,将有助于提高系统的冬季脱氮效果。  相似文献   

7.
序批式活性污泥工艺生物脱氮现场试验   总被引:1,自引:0,他引:1  
针对某污水处理厂序批式活性污泥工艺(SBR)升级改造中遇到的问题,进行了现场试验。分别研究了前置反硝化、前后同时反硝化工艺处理效果。结果表明:(1)SBR处理城市污水,COD、NH+4-N能够达到《城镇污水处理厂污染物排放标准》(GB18918—2002)一级A标准,但不能保证TN达标,其中碳源不足是关键因素。(2)补充葡萄糖作为外加碳源,可以保证TN达标。葡萄糖最优投加量为125mg/L,此时TN的去除率为76.1~83.8%,出水TN稳定在11~12mg/L。  相似文献   

8.
以剩余污泥水解酸化液为外加碳源的污水生物脱氮   总被引:3,自引:0,他引:3  
为解决低碳氮比污水生物脱氮过程反硝化碳源不足的问题,利用剩余污泥水解酸化液为外加碳源,通过具有曝气段与非曝气段的一体化曝气生物滤池(BAF),研究低碳氮比污水生物脱氮的性能与工艺条件。实验结果表明,预处理后的水解酸化液VFAs为3134.9~5251.4mg/L、ThODVFAs/COD为59.87%~91.85%,适合作为生物脱氮的外加碳源;水解酸化液的投配量、进水TN浓度对系统生物脱氮效果的影响较大,气水比、曝气段与非曝气段比例对系统的硝化和反硝化性能有重要的影响;在温度为25±1℃,水解酸化液COD平均为7555.1mg/L,进水TN、NH4-N和COD分别平均为43.88mg/L、39.04mg/L和56.8mg/L,碳源与污水投配的流量比为1:75的条件下,当BAF水力停留时间(HRT)为8h、曝气段与非曝气段比例为3:3、气水比为10:1、回流比为2:1时,NH4-N和TN的去除率分别超过98%和75%,出水COD平均为28.6mg/L。研究指出,剩余污泥水解酸化液经过预处理后可用作低碳氮比污水生物脱氮的外加碳源,有效地提高了反硝化效果,并不会造成二次污染,同时又可以实现剩余污泥的减量化和资源化。  相似文献   

9.
针对垃圾填埋场渗滤液生物脱氮高耗能的问题,通过对A/O/N工艺处理垃圾渗滤液进行短程硝化反硝化调试,对溶解氧(DO)、污泥浓度(MLSS)、污泥龄(SRT)、混合液回流比、pH、碱度进行定性定量分析,研究了不同条件下垃圾渗滤液生物处理阶段COD、氨氮及总氮去除效果,探讨了影响亚硝酸盐氮积累的因素。结果表明,好氧池低溶解氧能成功启动短程硝化,垃圾渗滤液稳定实现短程硝化反硝化脱氮。运行条件为:O反应器DO浓度0.5~0.8 mg·L~(-1),N反应器DO浓度1.5~2.2 mg·L~(-1),MLSS 3 500~4 500 mg·L~(-1),污泥龄9~13 d,混合液回流比1 100%,N反应器pH 7.6~8.2,N反应器碱度1.1 g·L~(-1)。短程硝化调试后,硝化阶段亚硝化率稳定在85%以上,COD、氨氮及总氮去除率分别达95%、98.6%、94.2%以上,节省30%碳源量和20%曝气量。  相似文献   

10.
考察了以丝瓜络为填料的反硝化生物滤池对生活污水中TN和TP等污染负荷去除的效果。结果表明,通过间歇运行的方式,在不加碳源的条件下,水力停留时间为24 h,各污染物的去除效果较好,对NO_3~--N、NO_2~--N、NH_3-N、TN、TP和COD平均去除率分别为95%、92%、30%、75%、25%和50%,出水总氮含量低于城镇污水处理厂一级A标准(GB 18918-2002)。通过扫描电镜对丝瓜络微观表面形貌进行观察,发现丝瓜络具有微米级的网状结构,反应后表面镶嵌有大量球形的微生物群落,且内部网壁变薄。  相似文献   

11.
以探究前处理垃圾渗滤液作为去除高浓度硝态氮外加碳源的可行性为目的,建立SBR系统R0、R1(分别以无水乙酸钠、前处理垃圾渗滤液+无水乙酸钠作为碳源),采用模拟高浓度硝态氮废水培养获得快速高效反硝化活性污泥,考察了其脱氮效能并进行了分子生物学分析。结果表明:在PLL添加体积分数为10%时,R1系统在2.5 h内可将硝态氮几乎完全去除,反硝化速率高达58.05 mg·(g·h)~(-1),是R0系统的1.79倍;16S rDNA扩增子测序结果显示,R0、R1反应器内微生物种群类别较为相似,丰度位于前3位的优势反硝化菌分别为假单胞菌属(Pseudomonas)、陶厄氏菌属(Thauera)和Pannonibacter,但相对丰度存在差异;经qPCR测定,实验组R1中反硝化基因nar G、nir K、nir S和nor B的相对表达量显著高于对照组R0。前处理垃圾渗滤液作为外加碳源可以提高污泥反硝化活性。  相似文献   

12.
针对城市污水处理厂污泥厌氧消化液回流而引起城市污水处理厂处理系统内氨氮累积的问题,采用多级潮汐流人工湿地(MTF-CWs),研究MTF-CWs对污泥厌氧消化液中氨氮和有机物的去除特征及其主要去除途径。经过260 d的运行,结果表明,NH_4~+-N和COD平均进水浓度分别为859.55 mg·L~(-1)和446.52 mg·L~(-1),MTF-CWs对NH_4~+-N和COD均有较好的处理效果,平均去除率分别为66.50%和47.10%。在MTF-CWs中,转化为NO_2~--N和NO_3~--N占被去除NH_4~+-N的73.21%,硝化反应是NH_4~+-N去除的主要途径,MTF-CWs的平均硝化速率为0.3 kg·(m~3·d)~(-1)。TN的平均去除率为17.63%,去除效果较差,其原因在于原水中缺少反硝化所需要的碳源。  相似文献   

13.
温度及外加碳源对生物脱氮除磷过程的影响   总被引:3,自引:0,他引:3  
针对污水处理厂普遍面临的进水碳源不足及冬季低温时出水氮磷不能稳定达标的问题,研究了温度(21、15和10℃)和外加碳源(乙酸)对活性污泥缺氧条件下反硝化及释磷过程的影响。结果表明,在缺氧条件下投加乙酸,释磷与反硝化反应可同时进行,且乙酸投量的增加仅延长快速碳源反硝化阶段及缺氧释磷阶段的反应时间;温度降低为15℃和10℃时,快速碳源反硝化阶段反硝化速率及缺氧释磷速率较21℃分别降低了约29.2%、42.2%和26.1%、32.3%。当硝态氮目标去除量与磷酸盐目标释放量之比超过5时,乙酸的最优投量以满足反硝化要求为准,计算得出21、15和10℃时常州某城镇污水处理厂乙酸最优投加量计算值约为30、39和46 mg/L。  相似文献   

14.
以去除海水循环水养殖系统中硝酸盐(NO_3~--N)为目的,通过接种好氧反硝化细菌的方式构建海水好氧反硝化反应器,对其反硝化脱氮性能和动力学特征展开研究。研究结果显示,好氧反硝化反应器完成挂膜需要15 d。在有氧条件下,反应器对NO_3~--N浓度为30~150 mg·L-1海水具有良好的反硝化性能,NO_3~--N的去除率达到90%以上。批次实验结果显示:好氧反硝化过程呈现阶段性,NO_3~--N在整个过程中可被高效去除;NO_2~--N积累最大值随初始NO_3~--N浓度的增大而增大,且初始NO_3~--N浓度越高,NO_2~--N完全去除所需时间越长。采用Monod方程的微分方程模型,能够很好地拟合反硝化过程中NO_3~--N、NO_2~--N的变化趋势。该好氧反硝化反应器具有良好的脱氮性能,为解决循环水养殖系统NO_3~--N积累问题提供了新的思路。  相似文献   

15.
碳源投加方式对SBR工艺脱氮速率的影响   总被引:1,自引:0,他引:1  
为了提高生物反应器的脱氮效率,研究采用SBR处理模拟生活污水,利用醋酸钠作为碳源,考察碳源投加方式对脱氮速率的影响。结果表明,当温度为10~15℃,进水COD为330~550 mg/L时,采用不同的碳源投加方式,COD去除率均高于95%。进水一次投加2.4 g碳源,COD平均反应速率为5.3 mg/(g·h),平均反硝化速率为0.28 mg/(g·h)。进水、反应器运行3 h时分别投加1.2 g碳源,COD平均反应速率为6.89 mg/(g·h),平均反硝化速率为0.37 mg/(g·h)。进水、反应6 h时分别投加1.2 g碳源,COD平均反应速率为6.50 mg/(g·h),平均反硝化速率为0.52 mg/(g·h)。进水投加1.2 g碳源、反应器运行3 h和6 h时分别投加0.6 g醋酸钠碳源,COD平均反应速率为6.2 mg/(g·h),平均反硝化速率为0.39 mg/(g·h)。分次投加碳源能够提高COD反应速率和TN去除率,同时保持较高的硝化反硝化速率。  相似文献   

16.
具有异养硝化-好氧反硝化特性的粪产碱杆菌(Alcaligenes faecalis No.4)直接处理污泥厌氧消化液中的高浓度氨氮时,在60 h内氨氮(原始浓度441 mg/L)去除率约为18%。沼液中碳源验证实验表明,乙酸可作为其优质碳源。因而,可以通过外加乙酸钠的方式来解决污泥厌氧消化液碳源不足的问题。当污泥消化液中添加足够的碳源-乙酸钠使得C/N为10时,Alcaligenes faecalis No.4的脱氮效果良好,氨氮的去除率达到了98%以上。研究结果表明,在利用粪产碱杆菌处理高浓度氨氮沼液时,酸化污泥作为外加碳源的方式具有其理论可行性。  相似文献   

17.
针对石化废水难以达到地方新标准的问题,通过DNF-O_3-BAC工艺对石化废水进行深度处理,采用紫外分光光度法、重铬酸钾氧化法等方法对出水中各类氮浓度、COD、UV_(254)以及分子质量分布进行了检测;研究了不同碳源及C/N比对DNF单元反硝化性能的影响,并探究了DNF-O_3-BAC工艺深度处理石化废水的机理。结果表明:当水力停留时间为2 h,乙酸钠为最佳碳源,在C/N为4的条件下,NO_3~--N去除率达到96.7%,且几NO_2~--N积累;O_3的最佳投加量为20 mg·L~(-1)时,此时COD的去除率为45%左右,B/C稳定在0.2以上,UV_(254)去除率达到14%;在O_3投加量为20 mg·L~(-1)的条件下,最优接触时间为40 min,此时COD去除率达到42%,B/C稳定在0.28,UV_(254)的去除率达到34%左右;相比原水,分子质量≤1 kDa的有机物的比例从69%上升到86%。各单元最优条件下的DNF-O_3-BAC工艺出水中COD为25 mg·L~(-1),UV_(254)稳定在0.11,TN为2 mg·L~(-1)。DNF-O_3-BAC工艺实现了石化废水中有机物和TN的降解,达到了地方标准。  相似文献   

18.
碳氮比对低温投加介体生物反硝化脱氮的影响   总被引:1,自引:0,他引:1  
污水的生物脱氮效果受低温抑制,投加氧化还原介体有利于反硝化过程。采用规格相同的序批式反应器,使用人工配制硝酸盐废水和经过驯化的活性污泥,考察了不同碳源浓度(碳氮比)对低温(10℃)投加氧化还原介体1, 2-萘醌-4-磺酸(NQS)污水生物反硝化脱氮过程的影响。结果表明:当碳源浓度(以COD计)为150~400mg·L~(-1) (碳氮比为1.8~4.7)时,脱氮效率随碳氮比的升高而升高;当碳源浓度为400~550 mg·L~(-1) (碳氮比为4.7~6.5)时,脱氮效率随着碳氮比的升高而降低;当碳源浓度为400 mg·L~(-1) (碳氮比为4.7)左右时效果最好,总氮去除率最高为64.7%。对于脱氮速率,介体强化脱氮速率随着碳氮比的升高而升高。同时,探讨了投加介体污水生物反硝化脱氮的机理,发现投加介体降低了体系的氧化还原电位(ORP),有利于反硝化脱氮反应的进行。  相似文献   

19.
为降低污水处理成本并实现出水稳定达标,采用中试规模生物絮凝-AAAO工艺处理城镇生活污水,并模拟生物絮凝污泥厌氧消化所产生的碳源,用于强化反硝化除磷菌(DPAO)驯化效果。实验结果表明:生物絮凝系统抗冲击负荷能力较强,化学需氧量(COD)、总氮(TN)和总磷(TP)平均去除率可达67.23%、 27%与68.93%。将模拟厌氧消化后产生的碳源投加至厌氧池促进DPAO的驯化后,AAAO系统对COD、TN和TP去除率分别提升31.53%、37.67%和26.37%,反硝化吸磷率最高可达62.97%,二沉池出水COD、TN均满足一级A出水标准,TP可低于0.30 mg·L-1。生物絮凝-AAAO工艺脱氮除磷效果较好,可为污水处理厂节能降耗运行奠定基础并有望得到广泛应用。  相似文献   

20.
王巧茹  史旋  宋伟  张小磊  李继 《环境工程学报》2019,13(11):2593-2600
为强化硫自养反硝化过程,通过向连续稳定运行的硫自养反硝化反应器内投加少量碳源以进行强化,乙酸钠投加量分别为5.99、11.98、23.96 mg·L~(-1)。分析投加前后反应器内硝氮、COD、硫酸根和耗碱量的变化;研究了碳源强化下硫自养反硝化运行效能及反应机理。结果表明,投加少量碳源可增强自养反硝化过程硝氮的去除效果;在3种碳源投加量条件下,COD的利用率均大于85%,但硫酸盐生成量并未减少;在5.99 mg·L~(-1)碳源投加量下,系统实际耗碱量大于以硫酸根和COD计的理论耗碱量,而在11.98 mg·L~(-1)和23.96 mg·L~(-1)投加量下,实际耗碱量均介于2种理论值之间。在投加少量碳源后,自养反硝化脱氮效果明显提高,异养反硝化趋势随着碳源投加量的增加而增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号